skip to main content

Search for: All records

Award ID contains: 2009619

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    Long gamma-ray bursts (LGRBs) are associated to the collapse of a massive star and the formation of a relativistic jet. As the jet propagates through the star, it forms an extended, hot cocoon. The dynamical evolution of the jet/cocoon system and its interaction with the environment has been studied extensively both analytically and numerically. On the other hand, the role played by the supernova (SN) explosion associated with LGRBs in determining the outcome of the system has been barely considered. In this paper, we discuss the large landscape of outcomes resulting from the interaction of the SN, jet, and cocoon. We show that the outcome depends mainly on three time-scales: the times for the cocoon and SN shock wave to break through the surface of the progenitor star, and the time needed for the cocoon to engulf completely the progenitor star. The delay between the launch of the SN shock moving through the progenitor star and the jet can be related to these three time-scales. Depending on the ordering of these time-scales, the jet-cocoon might propagate inside the SN ejecta or the other way around, and the outcome for the properties of the explosion would be different. We discussmore »the imprint of the complex interaction between the jet-cocoon and the SN shock on the emergent thermal and non-thermal radiation.

    « less
  2. ABSTRACT We describe three different methods for exploring the hydrogen reionization epoch using fast radio bursts (FRBs) and provide arguments for the existence of FRBs at high redshift (z). The simplest way, observationally, is to determine the maximum dispersion measure (DMmax) of FRBs for an ensemble that includes bursts during the reionization. The DMmax provides information regarding reionization much like the optical depth of the cosmic microwave background to Thomson scattering does, and it has the potential to be more accurate than constraints from Planck, if DMmax can be measured to a precision better than 500 pccm−3. Another method is to measure redshifts of about 40 FRBs between z of 6 and 10 with ${\sim}10{{\ \rm per\ cent}}$ accuracy to obtain the average electron density in four different z-bins with ${\sim}4{{\ \rm per\ cent}}$ accuracy. These two methods do not require knowledge of the FRB luminosity function and its possible redshift evolution. Finally, we show that the reionization history is reflected in the number of FRBs per unit DM, given a fluence limited survey of FRBs that includes bursts during the reionization epoch; we show using FIRE simulations that the contribution to DM from the FRB host galaxy and circumgalacticmore »medium during the reionization era is a small fraction of the observed DM. This third method requires no redshift information but does require knowledge of the FRB luminosity function.« less
  3. ABSTRACT The discovery of a fast radio burst (FRB) in our Galaxy associated with a magnetar (neutron star with strong magnetic field) has provided a critical piece of information to help us finally understand these enigmatic transients. We show that the volumetric rate of Galactic-FRB like events is consistent with the faint end of the cosmological FRB rate, and hence they most likely belong to the same class of transients. The Galactic FRB had an accompanying X-ray burst, but many X-ray bursts from the same object had no radio counterpart. Their relative rates suggest that for every FRB there are roughly 102–103 X-ray bursts. The radio light curve of the Galactic FRB had two spikes, separated by 30 ms in the 400–800 MHz frequency band. This is an important clue and highly constraining of the class of models where the radio emission is produced outside the light cylinder of the magnetar. We suggest that magnetic disturbances close to the magnetar surface propagate to a distance of a few tens of neutron star radii where they damp and produce radio emission. The coincident hard X-ray spikes associated with the two FRB pulses seen in this burst and the flux ratio between the twomore »frequency bands can be understood in this scenario. This model provides a unified picture for faint bursts like the Galactic FRB as well as the bright events seen at cosmological distances.« less
  4. ABSTRACT A few fast radio bursts’ (FRBs) light curves have exhibited large intrinsic modulations of their flux on extremely short ($t_{\rm r}\sim 10\, \mu$s) time-scales, compared to pulse durations (tFRB ∼ 1 ms). Light-curve variability time-scales, the small ratio of rise time of the flux to pulse duration, and the spectro-temporal correlations in the data constrain the compactness of the source and the mechanism responsible for the powerful radio emission. The constraints are strongest when radiation is produced far (≳1010 cm) from the compact object. We describe different physical set-ups that can account for the observed tr/tFRB ≪ 1 despite having large emission radii. The result is either a significant reduction in the radio production efficiency or distinct light-curve features that could be searched for in observed data. For the same class of models, we also show that due to high-latitude emission, if a flux f1(ν1) is observed at t1 then at a lower frequency ν2 < ν1 the flux should be at least (ν2/ν1)2f1 at a slightly later time (t2 = t1ν1/ν2) independent of the duration and spectrum of the emission in the comoving frame. These features can be tested, once light-curve modulations due to scintillation are accounted for. We provide the time-scalesmore »and coherence bandwidths of the latter for a range of possibilities regarding the physical screens and the scintillation regime. Finally, if future highly resolved FRB light curves are shown to have intrinsic variability extending down to ${\sim}\mu$s time-scales, this will provide strong evidence in favour of magnetospheric models.« less