skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrochromic Polycationic Organoboronium Macrocycles with Multiple Redox States
Abstract Polycationic macrocycles are attractive as they display unique molecular switching capabilities arising from their redox properties. Although diverse polycationic macrocycles have been developed, those based on cationic boron systems remain very limited. We present herein the development of novel polycationic macrocycles by introducing organoboronium moieties into a conjugated organoboron macrocyclic framework. These macrocycles consist of four bipyridylboronium units that are connected by fluorene and either electron‐deficient arylborane or electron‐rich arylamine moieties. Electrochemical studies reveal that the macrocycles undergo reversible multi‐step redox processes with transfer of up to 10 electrons. Switchable electrochromic behavior is demonstrated via spectroelectrochemical studies and the observed color changes are rationalized by correlation with computed electronic transitions using DFT methods.  more » « less
Award ID(s):
1954122 1664975 1229030 0443538
PAR ID:
10270032
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
60
Issue:
33
ISSN:
1433-7851
Format(s):
Medium: X Size: p. 17942-17946
Size(s):
p. 17942-17946
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cycloparaphenylenes (CPPs) are the smallest possible armchair carbon nanotubes, the properties of which strongly depend on their ring size. They can be further tuned by either peripheral functionalization or by replacing phenylene rings for other aromatic units. Here we show how four novel donor–acceptor chromophores were obtained by incorporating fluorenone or 2‐(9H‐fluoren‐9‐ylidene)malononitrile into the loops of two differently sized CPPs. Synthetically, we managed to perform late‐stage functionalization of the fluorenone‐based rings by high‐yielding Knoevenagel condensations. The structures were confirmed by X‐ray crystallographic analyses, which revealed that replacing a phenylene for a fused‐ring‐system acceptor introduces additional strain. The donor–acceptor characters of the CPPs were supported by absorption and fluorescence spectroscopic studies, electrochemical studies (displaying the CPPs as multi‐redox systems undergoing reversible or quasi‐reversible redox events), as well as by computations. The oligophenylene parts were found to comprise the electron donor units of the macrocycles and the fluorenone parts the acceptor units. 
    more » « less
  2. Abstract Redox is emerging as an alternative modality for bio‐device communication. In contrast to the more familiar ionic electrical modality: (i) redox involves the flow of electrons through oxidation–reduction reactions; (ii) the aqueous medium is an “insulator” to this electron flow since free electrons do not normally exist in water; and (iii) redox states are intrinsically digital (oxidized and reduced). By exploiting these unique features, a catechol‐based molecular memory film is reported. This memory is fabricated by electrochemically grafting catechol to a chitosan–agarose polysaccharide network to generate a redox‐active but non‐conducting matrix. The redox state of the grafted catechol moieties serves as the 2‐state memory. It is shown that these redox states: can be repeatedly switched by diffusible mediators (electron shuttles); can be easily read electrically or optically; are stable for at least 2 h in the absence of energy; are sensitive to biologically relevant oxidizing and reducing contexts; and can be switched enzymatically. This catechol‐based molecular memory film is a simple circuit element for redox linked bioelectronics. 
    more » « less
  3. Abstract Organic electrode materials could revolutionize batteries because of their high energy densities, the use of Earth‐abundant elements, and structural diversity which allows fine‐tuning of electrochemical properties. However, small organic molecules and intermediates formed during their redox cycling in lithium‐ion batteries (LIBs) have high solubility in organic electrolytes, leading to rapid decay of cycling performance. We report the use of three cyclotetrabenzil octaketone macrocycles as cathode materials for LIBs. The rigid and insoluble naphthalene‐based cyclotetrabenzil reversibly accepts eight electrons in a two‐step process with a specific capacity of 279 mAh g−1and a stable cycling performance with ≈65 % capacity retention after 135 cycles. DFT calculations indicate that its reduction increases both ring strain and ring rigidity, as demonstrated by computed high distortion energies, repulsive regions in NCI plots, and close [C⋅⋅⋅C] contacts between the naphthalenes. This work highlights the importance of shape‐persistency and ring strain in the design of redox‐active macrocycles that maintain very low solubility in various redox states. 
    more » « less
  4. While many foldamer systems reliably fold into well‐defined secondary structures, higher order structure remains a challenge. A simple strategy for the organization of folded subunits in space is to link them together within a macrocycle. Previous work has shown thato‐phenylenes can be co‐assembled with rod‐shaped linkers into twisted macrocycles, showing an interesting synergy between folding and thermodynamically controlled macrocyclization. In these systems the foldamer units were largely decoupled from each other both conformationally and electronically. Here, we show that hydrocarbon macrocycles, with very short ethenylene linkers, can be assembled fromo‐phenylenes using olefin metathesis. Characterization by NMR spectroscopy, X‐ray crystallography, and ab initio calculations shows that the products are approximately triangular trimer macrocycles with helicalo‐phenylene corners in a heterochiral configuration. Their photophysics are dominated by the 4,4'‐diphenylstilbene moieties, the longest conjugated segments, with further conjugation broken by the twisting of theo‐phenylenes. 
    more » « less
  5. Abstract Emerging research indicates that biology routinely uses diffusible redox‐active molecules to mediate communication that can span biological systems (e.g., nervous and immune) and even kingdoms (e.g., a microbiome and its plant/animal host). This redox modality also provides new opportunities to create interactive materials that can communicate with living systems. Here, it is reported that the fabrication of a redox‐active hydrogel film can autonomously synthesize a H2O2signaling molecule for communication with a bacterial population. Specifically, a catechol‐conjugated/crosslinked 4‐armed thiolated poly(ethylene glycol) hydrogel film is electrochemically fabricated in which the added catechol moieties confer redox activity: the film can accept electrons from biological reductants (e.g., ascorbate) and donate electrons to O2to generate H2O2. Electron‐transfer from anEscherichia coliculture poises this film to generate the H2O2signaling molecule that can induce bacterial gene expression from a redox‐responsive operon. Overall, this work demonstrates that catecholic materials can participate in redox‐based interactions that elicit specific biological responses, and also suggests the possibility that natural phenolics may be a ubiquitous biological example of interactive materials. 
    more » « less