skip to main content


Title: Direct observation of the formation and stabilization of metallic nanoparticles on carbon supports
Abstract Direct formation of ultra-small nanoparticles on carbon supports by rapid high temperature synthesis method offers new opportunities for scalable nanomanufacturing and the synthesis of stable multi-elemental nanoparticles. However, the underlying mechanisms affecting the dispersion and stability of nanoparticles on the supports during high temperature processing remain enigmatic. In this work, we report the observation of metallic nanoparticles formation and stabilization on carbon supports through in situ Joule heating method. We find that the formation of metallic nanoparticles is associated with the simultaneous phase transition of amorphous carbon to a highly defective turbostratic graphite (T-graphite). Molecular dynamic (MD) simulations suggest that the defective T-graphite provide numerous nucleation sites for the nanoparticles to form. Furthermore, the nanoparticles partially intercalate and take root on edge planes, leading to high binding energy on support. This interaction between nanoparticles and T-graphite substrate strengthens the anchoring and provides excellent thermal stability to the nanoparticles. These findings provide mechanistic understanding of rapid high temperature synthesis of metal nanoparticles on carbon supports and the origin of their stability.  more » « less
Award ID(s):
1635221 1809439
NSF-PAR ID:
10270649
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The fast and efficient synthesis of nanoparticles on flexible and lightweight substrates is increasingly critical for various medical and wearable applications. However, conventional high temperature (high-T) processes for nanoparticle synthesis are intrinsically incompatible with temperature-sensitive substrates, including textiles and paper ( i.e. low-T substrates). In this work, we report a non-contact, ‘fly-through’ method to synthesize nanoparticles on low-T substrates by rapid radiative heating under short timescales. As a demonstration, textile substrates loaded with platinum (Pt) salt precursor are rapidly heated and quenched as they move across a 2000 K heating source at a continuous production speed of 0.5 cm s −1 . The rapid radiative heating method induces the thermal decomposition of various precursor salts and nanoparticle formation, while the short duration ensures negligible change to the respective low-T substrate along with greatly improved production efficiency. The reported method can be generally applied to the synthesis of metal nanoparticles ( e.g. gold and ruthenium) on various low-T substrates ( e.g. paper). The non-contact and continuous ‘fly-through’ synthesis offers a robust and efficient way to synthesize supported nanoparticles on flexible and lightweight substrates. It is also promising for ultrafast and roll-to-roll manufacturing to enable viable applications. 
    more » « less
  2. Abstract

    The availability of durable, high‐performance electrocatalysts for the hydrogen oxidation reaction (HOR) is currently a constraint for anion‐exchange membrane fuel cells (AEMFCs). Herein, a rapid microwave‐assisted synthesis method is used to develop a core–shell catalyst support based on a hydrogenated TiO2/carbon for PtRu nanoparticles (NPs). The hydrogenated TiO2provides a strong metal‐support interaction with the PtRu NPs, which improves the catalyst's oxophilicity and HOR activity compared to commercial PtRu/C and enables greater size control of the catalyst NPs. The as‐synthesized PtRu/TiO2/C‐400 electrocatalyst exhibits respectable performance in an AEMFC operated at 80 °C, yielding the highest current density (up to 3× higher) within the catalytic region (compared at 0.80–0.90 V) and voltage efficiency (68%@ 0.5 A cm−2) values in the compared literature. In addition, the cell demonstrates promising short‐term voltage stability with a minor voltage decay of 1.5 mV h−1. This “first‐of‐its‐kind in alkaline” work may open further research avenues to develop rapid synthesis methods to prepare advanced core–shell metal‐oxide/carbon supports for electrocatalysts for use in the next‐generation of AEMFCs with potential applicability to the broader electrochemical systems research community.

     
    more » « less
  3. Abstract

    Nanoparticles supported on carbonaceous substrates are promising electrocatalysts. However, achieving good stability for the electrocatalysts during long‐term operations while maintaining high activity remains a grand challenge. Herein, a highly stable and active electrocatalyst featuring high‐entropy oxide (HEO) nanoparticles uniformly dispersed on commercial carbon black is reported, which is synthesized via rapid high‐temperature heating (≈1 s, 1400 K). Notably, the HEO nanoparticles with a record‐high entropy are composed of ten metal elements (i.e., Hf, Zr, La, V, Ce, Ti, Nd, Gd, Y, and Pd). The rapid high‐temperature synthesis can tailor structural stability and avoid nanoparticle detachment or agglomeration. Meanwhile, the high‐entropy design can enhance chemical stability to prevent elemental segregation. Using oxygen reduction reaction as a model, the 10‐element HEO exhibits good activity and greatly enhances stability (i.e., 92% and 86% retention after 12 and 100 h, respectively) compared to the commercial Pd/C electrocatalyst (i.e., 76% retention after 12 h). This superior performance is attributed to the high‐entropy compositional design and synthetic approach, which offers an entropy stabilization effect and strong interfacial bonding between the nanoparticles and carbon substrate. The approach promises a viable route toward synthesizing carbon‐supported high‐entropy electrocatalysts with good stability and high activity for various applications.

     
    more » « less
  4. Multi-elemental alloy nanoparticles (MEA-NPs) hold great promise for catalyst discovery in a virtually unlimited compositional space. However, rational and controllable synthesize of these intrinsically complex structures remains a challenge. Here, we report the computationally aided, entropy-driven design and synthesis of highly efficient and durable catalyst MEA-NPs. The computational strategy includes prescreening of millions of compositions, prediction of alloy formation by density functional theory calculations, and examination of structural stability by a hybrid Monte Carlo and molecular dynamics method. Selected compositions can be efficiently and rapidly synthesized at high temperature (e.g., 1500 K, 0.5 s) with excellent thermal stability. We applied these MEA-NPs for catalytic NH 3 decomposition and observed outstanding performance due to the synergistic effect of multi-elemental mixing, their small size, and the alloy phase. We anticipate that the computationally aided rational design and rapid synthesis of MEA-NPs are broadly applicable for various catalytic reactions and will accelerate material discovery. 
    more » « less
  5. Abstract

    Single‐atom catalysts (SACs) have attracted much attentions due to the advantages of high catalysis efficiency and selectivity. However, the controllable and efficient synthesis of SACs remains a significant challenge. Herein, we report a controlled one‐pot synthesis of nickel single atoms embedded on nitrogen‐doped carbon nanotubes (NiSA−N−CNT) and nitrogen‐doped graphene (NiSA−N−G). The formation of NiSA−N−CNT is due to the solid‐to‐solid rolling up mechanism during the high temperature pyrolysis at 800 °C from the stacked and layered Ni‐doped g‐C3N4, g‐C3N4−Ni structure to a tubular CNT structure. Addition of citric acid introduces an amorphous carbon source on the layered g‐C3N4−Ni and after annealing at the same temperature of 800 °C, instead of formation of NiSA−N−CNT, Ni single atoms embedded in planar graphene type supports, NiSA−N−G were obtained. The density functional theory (DFT) calculation indicates the introduction of amorphous carbon source substantially reduces the structure fluctuation or curvature of layered g‐C3N4‐Ni intermediate products, thus interrupting the solid‐to‐solid rolling process and leading to the formation of planar graphene type supports for Ni single atoms. The as‐synthesized NiSA−N−G with Ni atomic loading of ∼6 wt% catalysts shows a better activity and stability for the CO2reduction reaction (CO2RR) than NiSA−N−CNT with Ni atomic loading of ∼15 wt% due to the open and exposed Ni single atom active sites in NiSA−N−G. This study demonstrates for the first time the feasibility in the control of the microstructure of carbon supports in the synthesis of SACs.

     
    more » « less