Transferring Hydrologic Data Across Continents – Leveraging Data‐Rich Regions to Improve Hydrologic Prediction in Data‐Sparse Regions
- Award ID(s):
- 1940190
- PAR ID:
- 10270718
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 57
- Issue:
- 5
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Much of modern science takes place in a computational environment, and, increasingly, that environment is programmed using R, Python, or Julia. Furthermore, most scientific data now live on the cloud, so the first step in many workflows is to query a cloud database and load the response into a computational environment for further analysis. Thus, tools that facilitate programmatic data retrieval represent a critical component in reproducible scientific workflows. Earth science is no different in this regard. To fulfill that basic need, we developed R, Python, and Julia packages providing programmatic access to the U.S. Geological Survey’s National Water Information System database and the multi-agency Water Quality Portal. Together, these packages create a common interface for retrieving hydrologic data in the Jupyter ecosystem, which is widely used in water research, operations, and teaching. Source code, documentation, and tutorials for the packages are available on GitHub. Users can go there to learn, raise issues, or contribute improvements within a single platform, which helps foster better engagement and collaboration between data providers and their users.more » « less
-
This dataset contains the codes and data used in the manuscript “Influence of Subsurface Critical Zone Structure on Hydrological Partitioning in Mountainous Headwater Catchments” submitted to Geophysical Research Letters. The software requirement are summarized in requirement.txt; hydrologic modeling input data are in the folder TLnewtest2sfb2; the observation data used in the simulation are indicated as comments in the python scripts. Note that the hydrologic modeling was run in HPC (Linux system) with parallel computing. Below are the abstract of the manuscript: “Headwater catchments play a vital role in regional water supply and ecohydrology, and a quantitative understanding of the hydrological partitioning in these catchments is critically needed, particularly under a changing climate. Recent studies have highlighted the importance of subsurface critical zone (CZ) structure in modulating the partitioning of precipitation in mountainous catchments; however, few existing studies have explicitly taken into account the 3D subsurface CZ structure. In this study, we designed realistic synthetic catchment models based on seismic velocity-estimated 3D subsurface CZ structures. Integrated hydrologic modeling is then used to study the effect of the shape of the weathered bedrock bottom on various hydrologic fluxes and storages in mountainous headwater catchments. Numerical results show that the shape of the weathered bedrock bottom not only affects the magnitude but also the peak time of both streamflow and subsurface dynamic storage.”more » « less