skip to main content


Title: Transferring Hydrologic Data Across Continents – Leveraging Data‐Rich Regions to Improve Hydrologic Prediction in Data‐Sparse Regions
Award ID(s):
1940190
PAR ID:
10270718
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Water Resources Research
Volume:
57
Issue:
5
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spatial interpolation techniques play an important role in hydrology, as many point observations need to be interpolated to create continuous surfaces. Despite the availability of several tools and methods for interpolating data, not all of them work consistently for hydrologic applications. One of the techniques, the Laplace Equation, which is used in hydrology for creating flownets, has rarely been used for data interpolation. The objective of this study is to examine the efficiency of Laplace formulation (LF) in interpolating data used in hydrologic applications (hydrologic data) and compare it with other widely used methods such as inverse distance weighting (IDW), natural neighbor, and ordinary kriging. The performance of LF interpolation with other methods is evaluated using quantitative measures, including root mean squared error (RMSE) and coefficient of determination (R2) for accuracy, visual assessment for surface quality, and computational cost for operational efficiency and speed. Data related to surface elevation, river bathymetry, precipitation, temperature, and soil moisture are used for different areas in the United States. RMSE and R2 results show that LF is comparable to other methods for accuracy. LF is easy to use as it requires fewer input parameters compared to inverse distance weighting (IDW) and Kriging. Computationally, LF is faster than other methods in terms of speed when the datasets are not large. Overall, LF offers a robust alternative to existing methods for interpolating various hydrologic data. Further work is required to improve its computational efficiency. 
    more » « less
  2. This is for the paper Geophysics-informed hydrologic modeling of a mountain headwater catchment for studying hydrological partitioning in the critical zone. Also check the description in https://github.com/geohang/Geophysics_informed_models 
    more » « less
  3. A region \(\mathcal {R} \) is a dwell region for a moving object O if, given a threshold distance r q and duration τ q , every point of \(\mathcal {R} \) remains within distance r q from O for at least time τ q . Points within \(\mathcal {R} \) are likely to be of interest to O , so identification of dwell regions has applications such as monitoring and surveillance. We first present a logarithmic-time online algorithm to find dwell regions in an incoming stream of object positions. Our method maintains the upper and lower bounds for the radius of the smallest circle enclosing the object positions, thereby greatly reducing the number of trajectory points needed to evaluate the query. It approximates the radius of the smallest circle enclosing a given subtrajectory within an arbitrarily small user-defined factor, and is also able to efficiently answer decision queries asking whether or not a dwell region exists. For the offline version of the dwell region problem, we first extend our online approach to develop the ρ -Index, which indexes subtrajectories using query radius ranges. We then refine this approach to obtain the τ -Index, which indexes subtrajectories using both query radius ranges and dwell durations. Our experiments using both real-world and synthetic datasets show that the online approach can scale up to hundreds of thousands of moving objects. For archived trajectories, our indexing approaches speed up queries by many orders of magnitude. 
    more » « less