skip to main content


Title: From Bypass Transition to Flow Control and Data-Driven Turbulence Modeling: An Input–Output Viewpoint
Transient growth and resolvent analyses are routinely used to assess nonasymptotic properties of fluid flows. In particular, resolvent analysis can be interpreted as a special case of viewing flow dynamics as an open system in which free-stream turbulence, surface roughness, and other irregularities provide sources of input forcing. We offer a comprehensive summary of the tools that can be employed to probe the dynamics of fluctuations around a laminar or turbulent base flow in the presence of such stochastic or deterministic input forcing and describe how input–output techniques enhance resolvent analysis. Specifically, physical insights that may remain hidden in the resolvent analysis are gained by detailed examination of input–output responses between spatially localized body forces and selected linear combinations of state variables. This differentiating feature plays a key role in quantifying the importance of different mechanisms for bypass transition in wall-bounded shear flows and in explaining how turbulent jets generate noise. We highlight the utility of a stochastic framework, with white or colored inputs, in addressing a variety of open challenges including transition in complex fluids, flow control, and physics-aware data-driven turbulence modeling. Applications with temporally or spatially periodic base flows are discussed and future research directions are outlined.  more » « less
Award ID(s):
1809833
NSF-PAR ID:
10378269
Author(s) / Creator(s):
Date Published:
Journal Name:
Annual Review of Fluid Mechanics
Volume:
53
Issue:
1
ISSN:
0066-4189
Page Range / eLocation ID:
311 to 345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Input–output analysis of transitional channel flows has proven to be a valuable analytical tool for identifying important flow structures and energetic motions. The traditional approach abstracts the nonlinear terms as forcing that is unstructured, in the sense that this forcing is not directly tied to the underlying nonlinearity in the dynamics. This paper instead employs a structured-singular-value-based approach that preserves certain input–output properties of the nonlinear forcing function in an effort to recover the larger range of key flow features identified through nonlinear analysis, experiments and direct numerical simulation (DNS) of transitional channel flows. Application of this method to transitional plane Couette and plane Poiseuille flows leads to not only the identification of the streamwise coherent structures predicted through traditional input–output approaches, but also the characterization of the oblique flow structures as those requiring the least energy to induce transition, in agreement with DNS studies, and nonlinear optimal perturbation analysis. The proposed approach also captures the recently observed oblique turbulent bands that have been linked to transition in experiments and DNS with very large channel size. The ability to identify the larger amplification of the streamwise varying structures predicted from DNS and nonlinear analysis in both flow regimes suggests that the structured approach allows one to maintain the nonlinear effects associated with weakening of the lift-up mechanism, which is known to dominate the linear operator. Capturing this key nonlinear effect enables the prediction of a wider range of known transitional flow structures within the analytical input–output modelling paradigm. 
    more » « less
  2. Recent simulations indicate that streamwise-preferential porous materials have the potential to reduce drag in wall-bounded turbulent flows (Gómez-de-Segura & García-Mayoral, J. Fluid Mech. , vol. 875, 2019, pp. 124–172). This paper extends the resolvent formulation to study the effect of such anisotropic permeable substrates on turbulent channel flow. Under the resolvent formulation, the Fourier-transformed Navier–Stokes equations are interpreted as a linear forcing–response system. The nonlinear terms are considered the endogenous forcing in the system that gives rise to a velocity and pressure response. A gain-based decomposition of the forcing–response transfer function – the resolvent operator – identifies response modes (resolvent modes) that are known to reproduce important structural and statistical features of wall-bounded turbulent flows. The effect of permeable substrates is introduced in this framework using the volume-averaged Navier–Stokes equations and a generalized form of Darcy's law. Substrates with high streamwise permeability and low spanwise permeability are found to suppress the forcing–response gain for the resolvent mode that serves as a surrogate for the energetic near-wall cycle. This reduction in mode gain is shown to be consistent with the drag reduction trends predicted by theory and observed in numerical simulations. Simulation results indicate that drag reduction is limited by the emergence of spanwise rollers resembling Kelvin–Helmholtz vortices beyond a threshold value of wall-normal permeability. The resolvent framework also predicts the conditions in which such energetic spanwise-coherent rollers emerge. These findings suggest that a limited set of resolvent modes can serve as the building blocks for computationally efficient models that enable the design and optimization of permeable substrates for passive turbulence control. 
    more » « less
  3. Low-fidelity engineering wake models are often combined with linear superposition laws to predict wake velocities across wind farms under steady atmospheric conditions. While convenient for wind farm planning and long-term performance evaluation, such models are unable to capture the time-varying nature of the waked velocity field, as they are agnostic to the complex aerodynamic interactions among wind turbines and the effects of atmospheric boundary layer turbulence. To account for such effects while remaining amenable to conventional system-theoretic tools for flow estimation and control, we propose a new class of data-enhanced physics-based models for the dynamics of wind farm flow fluctuations. Our approach relies on the predictive capability of the stochastically forced linearized Navier–Stokes equations around static base flow profiles provided by conventional engineering wake models. We identify the stochastic forcing into the linearized dynamics via convex optimization to ensure statistical consistency with higher-fidelity models or experimental measurements while preserving model parsimony. We demonstrate the utility of our approach in completing the statistical signature of wake turbulence in accordance with large-eddy simulations of turbulent flow over a cascade of yawed wind turbines. Our numerical experiments provide insight into the significance of spatially distributed field measurements in recovering the statistical signature of wind farm turbulence and training stochastic linear models for short-term wind forecasting.

     
    more » « less
  4. Turbulence is a major source of momentum, heat, moisture, and aerosol transport in the atmosphere. Hence, it is crucial to understand and accurately characterize turbulence mechanisms in atmospheric flows. Many complex factors in the atmosphere influence the turbulence structures including stratification and background shear. However, our understanding of the interacting effects of these factors on coherent turbulence structure evolutions is still limited. In this talk, we aim to bridge this knowledge gap by using mode decomposition techniques and a wide range of large-eddy simulation (LES) data. By developing a data-driven technique, we will characterize unique features of atmospheric boundary layer (ABL) turbulence under different forcing scenarios. We will present 3D LES wind speed snapshots of different ABL flows that will be used as dynamic mode decomposition (DMD) input data. Then, the obtained modes and eigenvalues will be employed to gain insights into coherent turbulence structures in ABLs. We will explain the physical meaning of dominant modes and how each mode relates to the physical cause of turbulence structures. The dominant modes, which are selected based on the mode amplitude, contain the most important spatial and temporal characteristics of the flow. We will evaluate the accuracy of the performance of this method by reconstructing the flow field with only a small number of modes, and then calculate the mean average error between the real flow and the reconstructed flow fields. We will present different data frequencies, wind speeds, and surface heat fluxes. This allows us to elucidate the modes and determine the conditions in which the mode decomposition provides more accurate results for the ABL flows. Our findings can be used to identify the major causes of turbulence in real atmospheric flows and could provide a deeper insight into the dynamics of turbulence in ABLs. Our results will also be useful for developing reduced-order models that can rapidly predict the turbulent ABL flow fields. 
    more » « less
  5. Abstract

    Microfluidics has enabled a revolution in the manipulation of small volumes of fluids. Controlling flows at larger scales and faster rates, ormacrofluidics, has broad applications but involves the unique complexities of inertial flow physics. We show how such effects are exploited in a device proposed by Nikola Tesla that acts as a diode or valve whose asymmetric internal geometry leads to direction-dependent fluidic resistance. Systematic tests for steady forcing conditions reveal that diodicity turns on abruptly at Reynolds number$${\rm{Re}}\approx 200$$Re200and is accompanied by nonlinear pressure-flux scaling and flow instabilities, suggesting a laminar-to-turbulent transition that is triggered at unusually low$${\rm{Re}}$$Re. To assess performance for unsteady forcing, we devise a circuit that functions as an AC-to-DC converter, rectifier, or pump in which diodes transform imposed oscillations into directed flow. Our results confirm Tesla’s conjecture that diodic performance is boosted for pulsatile flows. The connections between diodicity, early turbulence and pulsatility uncovered here can inform applications in fluidic mixing and pumping.

     
    more » « less