skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Approximate ideal structures and K-theory
We introduce a notion of approximate ideal structure for a C*-algebra, and use it as a tool to study K-theory groups. The notion is motivated by the classical Mayer-Vietoris sequence, by the theory of nuclear dimension as introduced by Winter and Zacharias, and by the theory of dynamical complexity introduced by Guentner, Yu, and the author. A major inspiration for our methods comes from recent work of Oyono-Oyono and Yu in the setting of controlled K-theory of filtered C*-algebras; we do not, however, use that language in this paper. We give two main applications. The first is a vanishing result for K-theory that is relevant to the Baum-Connes conjecture. The second is a permanence result for the Kunneth formula in C*-algebra K-theory: roughly, this says that if A can be decomposed into a pair of subalgebras (C,D) such that C, D, and C∩ D all satisfy the Kunneth formula, then A itself satisfies the Kunneth formula.  more » « less
Award ID(s):
1901522
PAR ID:
10272475
Author(s) / Creator(s):
Date Published:
Journal Name:
New York journal of mathematics
Volume:
27
ISSN:
1076-9803
Page Range / eLocation ID:
1-52
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cuntz, Joachim (Ed.)
    Complexity rank for C*-algebras was introduced by the second author and Yu for applications towards the UCT: very roughly, this rank is at most n if you can repeatedly cut the C∗-algebra in half at most n times, and end up with something finite-dimensional. In this paper, we study complexity rank, and also a weak complexity rank that we introduce; having weak complexity rank at most one can be thought of as “two-colored local finite-dimensionality”. We first show that, for separable, unital, and simple C*-algebras, weak complexity rank one is equivalent to the conjunction of nuclear dimension one and real rank zero. In particular, this shows that the UCT for all nuclear C*-algebras is equivalent to equality of the weak complexity rank and the complexity ranks for Kirchberg algebras with zero K-theory groups. However, we also show using a K-theoretic obstruction (torsion in K1) that weak complexity rank one and complexity rank one are not the same in general. We then use the Kirchberg–Phillips classification theorem to compute the complexity rank of all UCT Kirchberg algebras: it equals one when the K1-group is torsion-free, and equals two otherwise. 
    more » « less
  2. Motivated by the theory of Cuntz-Krieger algebras we define and study C ∗ C^\ast -algebras associated to directed quantum graphs. For classical graphs the C ∗ C^\ast -algebras obtained this way can be viewed as free analogues of Cuntz-Krieger algebras, and need not be nuclear. We study two particular classes of quantum graphs in detail, namely the trivial and the complete quantum graphs. For the trivial quantum graph on a single matrix block, we show that the associated quantum Cuntz-Krieger algebra is neither unital, nuclear nor simple, and does not depend on the size of the matrix block up to K K KK -equivalence. In the case of the complete quantum graphs we use quantum symmetries to show that, in certain cases, the corresponding quantum Cuntz-Krieger algebras are isomorphic to Cuntz algebras. These isomorphisms, which seem far from obvious from the definitions, imply in particular that these C ∗ C^\ast -algebras are all pairwise non-isomorphic for complete quantum graphs of different dimensions, even on the level of K K KK -theory. We explain how the notion of unitary error basis from quantum information theory can help to elucidate the situation. We also discuss quantum symmetries of quantum Cuntz-Krieger algebras in general. 
    more » « less
  3. Abstract LetGbe a linear real reductive Lie group. Orbital integrals define traces on the group algebra ofG. We introduce a construction of higher orbital integrals in the direction of higher cyclic cocycles on the Harish-Chandra Schwartz algebra ofG. We analyze these higher orbital integrals via Fourier transform by expressing them as integrals on the tempered dual ofG. We obtain explicit formulas for the pairing between the higher orbital integrals and theK-theory of the reduced group$$C^{*}$$-algebra, and we discuss their application toK-theory. 
    more » « less
  4. Cuntz, J (Ed.)
    Fell’s absorption principle states that the left regular representation of a group absorbs any unitary representation of the group when tensored with it. In a weakened form, this result carries over to the left regular representation of a right LCM submonoid of a group and its Nica-covariant isometric representations but it fails if the semigroup does not satisfy independence. In this paper, we explain how to extend Fell’s absorption principle to an arbitrary submonoidPof a groupGby using an enhanced version of the left regular representation. Li’s semigroup\mathrm{C}^{*}-algebra\mathrm{C}^{*}_{s}(P)and its representations appear naturally in our context. Using the enhanced left regular representation, we not only provide a very concrete presentation for the reduced object for\mathrm{C}^{*}_{s}(P)but we also resolve open problems and obtain very transparent proofs of earlier results. In particular, we address the non-selfadjoint theory and we show that the non-selfadjoint object attached to the enhanced left regular representation coincides with that of the left regular representation. We obtain a non-selfadjoint version of Fell’s absorption principle involving the tensor algebra of a semigroup and we use it to improve recent results of Clouâtre and Dor-On on the residual finite dimensionality of certain\mathrm{C}^{*}-algebras associated with such tensor algebras. As another application, we give yet another proof for the existence of a\mathrm{C}^{*}-algebra which is co-universal for equivariant, Li-covariant representations of a submonoidPof a groupG. 
    more » « less
  5. We generalize Jones’ planar algebras by internalising the notion to a pivotal braided tensor category C \mathcal {C} . To formulate the notion, the planar tangles are now equipped with additional ‘anchor lines’ which connect the inner circles to the outer circle. We call the resulting notion ananchored planar algebra. If we restrict to the case when C \mathcal {C} is the category of vector spaces, then we recover the usual notion of a planar algebra. Building on our previous work on categorified traces, we prove that there is an equivalence of categories between anchored planar algebras in C \mathcal {C} and pivotal module tensor categories over C \mathcal {C} equipped with a chosen self-dual generator. Even in the case of usual planar algebras, the precise formulation of this theorem, as an equivalence of categories, has not appeared in the literature. Using our theorem, we describe many examples of anchored planar algebras. 
    more » « less