Abstract We compare the algebras of the quantum automorphism group of finite-dimensional C$$^\ast $$-algebra $$B$$, which includes the quantum permutation group $$S_N^+$$, where $$N = \dim B$$. We show that matrix amplification and crossed products by trace-preserving actions by a finite Abelian group $$\Gamma $$ lead to isomorphic $$\ast $$-algebras. This allows us to transfer various properties such as inner unitarity, Connes embeddability, and strong $$1$$-boundedness between the various algebras associated with these quantum groups.
more »
« less
Quantum Cuntz-Krieger algebras
Motivated by the theory of Cuntz-Krieger algebras we define and study C ∗ C^\ast -algebras associated to directed quantum graphs. For classical graphs the C ∗ C^\ast -algebras obtained this way can be viewed as free analogues of Cuntz-Krieger algebras, and need not be nuclear. We study two particular classes of quantum graphs in detail, namely the trivial and the complete quantum graphs. For the trivial quantum graph on a single matrix block, we show that the associated quantum Cuntz-Krieger algebra is neither unital, nuclear nor simple, and does not depend on the size of the matrix block up to K K KK -equivalence. In the case of the complete quantum graphs we use quantum symmetries to show that, in certain cases, the corresponding quantum Cuntz-Krieger algebras are isomorphic to Cuntz algebras. These isomorphisms, which seem far from obvious from the definitions, imply in particular that these C ∗ C^\ast -algebras are all pairwise non-isomorphic for complete quantum graphs of different dimensions, even on the level of K K KK -theory. We explain how the notion of unitary error basis from quantum information theory can help to elucidate the situation. We also discuss quantum symmetries of quantum Cuntz-Krieger algebras in general.
more »
« less
- Award ID(s):
- 2000331
- PAR ID:
- 10413969
- Date Published:
- Journal Name:
- Transactions of the American Mathematical Society, Series B
- Volume:
- 9
- Issue:
- 26
- ISSN:
- 2330-0000
- Page Range / eLocation ID:
- 782 to 826
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract We extend the Lebesgue decomposition of positive measures with respect to Lebesgue measure on the complex unit circle to the non-commutative (NC) multi-variable setting of (positive) NC measures. These are positive linear functionals on a certain self-adjoint subspace of the Cuntz–Toeplitz $$C^{\ast }-$$algebra, the $$C^{\ast }-$$algebra of the left creation operators on the full Fock space. This theory is fundamentally connected to the representation theory of the Cuntz and Cuntz–Toeplitz $$C^{\ast }-$$algebras; any *−representation of the Cuntz–Toeplitz $$C^{\ast }-$$algebra is obtained (up to unitary equivalence), by applying a Gelfand–Naimark–Segal construction to a positive NC measure. Our approach combines the theory of Lebesgue decomposition of sesquilinear forms in Hilbert space, Lebesgue decomposition of row isometries, free semigroup algebra theory, NC reproducing kernel Hilbert space theory, and NC Hardy space theory.more » « less
-
null (Ed.)The class of simple separable KK-contractible (KK-equivalent to \{0\} ) C*-algebra s which have finite nuclear dimension is shown to be classified by the Elliott invariant. In particular, the class of C*-algebras A\otimes K is classifiable, where A is a simple separable C*-algebra with finite nuclear dimension and is the simple inductive limit of Razak algebras with unique trace, which is boundedmore » « less
-
Abstract Let $${{\mathcal{A}}}$$ and $${{\mathcal{B}}}$$ be operator algebras with $$c_{0}$$-isomorphic diagonals and let $${{\mathcal{K}}}$$ denote the compact operators. We show that if $${{\mathcal{A}}}\otimes{{\mathcal{K}}}$$ and $${{\mathcal{B}}}\otimes{{\mathcal{K}}}$$ are isometrically isomorphic, then $${{\mathcal{A}}}$$ and $${{\mathcal{B}}}$$ are isometrically isomorphic. If the algebras $${{\mathcal{A}}}$$ and $${{\mathcal{B}}}$$ satisfy an extra analyticity condition a similar result holds with $${{\mathcal{K}}}$$ being replaced by any operator algebra containing the compact operators. For nonselfadjoint graph algebras this implies that the graph is a complete invariant for various types of isomorphisms, including stable isomorphisms, thus strengthening a recent result of Dor-On, Eilers, and Geffen. Similar results are proven for algebras whose diagonals satisfy cancellation and have $$K_{0}$$-groups isomorphic to $${{\mathbb{Z}}}$$. This has implications in the study of stable isomorphisms between various semicrossed products.more » « less
-
Abstract We characterize the noncommutative Aleksandrov–Clark measures and the minimal realization formulas of contractive and, in particular, isometric noncommutative rational multipliers of the Fock space. Here, the full Fock space over $$\mathbb {C} ^d$$ is defined as the Hilbert space of square-summable power series in several noncommuting (NC) formal variables, and we interpret this space as the noncommutative and multivariable analogue of the Hardy space of square-summable Taylor series in the complex unit disk. We further obtain analogues of several classical results in Aleksandrov–Clark measure theory for noncommutative and contractive rational multipliers. Noncommutative measures are defined as positive linear functionals on a certain self-adjoint subspace of the Cuntz–Toeplitz algebra, the unital $C^*$ -algebra generated by the left creation operators on the full Fock space. Our results demonstrate that there is a fundamental relationship between NC Hardy space theory, representation theory of the Cuntz–Toeplitz and Cuntz algebras, and the emerging field of noncommutative rational functions.more » « less
An official website of the United States government

