skip to main content


Title: Planar Algebras in Braided Tensor Categories

We generalize Jones’ planar algebras by internalising the notion to a pivotal braided tensor categoryC\mathcal {C}. To formulate the notion, the planar tangles are now equipped with additional ‘anchor lines’ which connect the inner circles to the outer circle. We call the resulting notion ananchored planar algebra. If we restrict to the case whenC\mathcal {C}is the category of vector spaces, then we recover the usual notion of a planar algebra.

Building on our previous work on categorified traces, we prove that there is an equivalence of categories between anchored planar algebras inC\mathcal {C}and pivotal module tensor categories overC\mathcal {C}equipped with a chosen self-dual generator. Even in the case of usual planar algebras, the precise formulation of this theorem, as an equivalence of categories, has not appeared in the literature. Using our theorem, we describe many examples of anchored planar algebras.

 
more » « less
Award ID(s):
1654159
NSF-PAR ID:
10472029
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Memoirs of the American Mathematical Society
Volume:
282
Issue:
1392
ISSN:
0065-9266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For each odd integern≥<#comment/>3n \geq 3, we construct a rank-3 graphΛ<#comment/>n\Lambda _nwith involutionγ<#comment/>n\gamma _nwhose realC∗<#comment/>C^*-algebraCR∗<#comment/>(Λ<#comment/>n,γ<#comment/>n)C^*_{\scriptscriptstyle \mathbb {R}}(\Lambda _n, \gamma _n)is stably isomorphic to the exotic Cuntz algebraEn\mathcal E_n. This construction is optimal, as we prove that a rank-2 graph with involution(Λ<#comment/>,γ<#comment/>)(\Lambda ,\gamma )can never satisfyCR∗<#comment/>(Λ<#comment/>,γ<#comment/>)∼<#comment/>MEEnC^*_{\scriptscriptstyle \mathbb {R}}(\Lambda , \gamma )\sim _{ME} \mathcal E_n, and Boersema reached the same conclusion for rank-1 graphs (directed graphs) in [Münster J. Math.10(2017), pp. 485–521, Corollary 4.3]. Our construction relies on a rank-1 graph with involution(Λ<#comment/>,γ<#comment/>)(\Lambda , \gamma )whose realC∗<#comment/>C^*-algebraCR∗<#comment/>(Λ<#comment/>,γ<#comment/>)C^*_{\scriptscriptstyle \mathbb {R}}(\Lambda , \gamma )is stably isomorphic to the suspensionSRS \mathbb {R}. In the Appendix, we show that theii-fold suspensionSiRS^i \mathbb {R}is stably isomorphic to a graph algebra iff−<#comment/>2≤<#comment/>i≤<#comment/>1-2 \leq i \leq 1.

     
    more » « less
  2. In this paper, we consider the linear convection-diffusion equation in one dimension with periodic boundary conditions, and analyze the stability of fully discrete methods that are defined with local discontinuous Galerkin (LDG) methods in space and several implicit-explicit (IMEX) Runge-Kutta methods in time. By using the forward temporal differences and backward temporal differences, respectively, we establish two general frameworks of the energy-method based stability analysis. From here, the fully discrete schemes being considered are shown to have monotonicity stability, i.e. theL2L^2norm of the numerical solution does not increase in time, under the time step conditionτ<#comment/>≤<#comment/>F(h/c,d/c2)\tau \le \mathcal {F}(h/c, d/c^2), with the convection coefficientcc, the diffusion coefficientdd, and the mesh sizehh. The functionF\mathcal {F}depends on the specific IMEX temporal method, the polynomial degreekkof the discrete space, and the mesh regularity parameter. Moreover, the time step condition becomesτ<#comment/>≲<#comment/>h/c\tau \lesssim h/cin the convection-dominated regime and it becomesτ<#comment/>≲<#comment/>d/c2\tau \lesssim d/c^2in the diffusion-dominated regime. The result is improved for a first order IMEX-LDG method. To complement the theoretical analysis, numerical experiments are further carried out, leading to slightly stricter time step conditions that can be used by practitioners. Uniform stability with respect to the strength of the convection and diffusion effects can especially be relevant to guide the choice of time step sizes in practice, e.g. when the convection-diffusion equations are convection-dominated in some sub-regions.

     
    more » « less
  3. We show that for primesN,p≥<#comment/>5N, p \geq 5withN≡<#comment/>−<#comment/>1modpN \equiv -1 \bmod p, the class number ofQ(N1/p)\mathbb {Q}(N^{1/p})is divisible bypp. Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that whenN≡<#comment/>−<#comment/>1modpN \equiv -1 \bmod p, there is always a cusp form of weight22and levelΓ<#comment/>0(N2)\Gamma _0(N^2)whoseℓ<#comment/>\ellth Fourier coefficient is congruent toℓ<#comment/>+1\ell + 1modulo a prime abovepp, for all primesℓ<#comment/>\ell. We use the Galois representation of such a cusp form to explicitly construct an unramified degree-ppextension ofQ(N1/p)\mathbb {Q}(N^{1/p}).

     
    more » « less
  4. Let(R,m)(R,\mathfrak {m})be a Noetherian local ring of dimensiond≥<#comment/>2d\geq 2. We prove that ife(R^<#comment/>red)>1e(\widehat {R}_{red})>1, then the classical Lech’s inequality can be improved uniformly for allm\mathfrak {m}-primary ideals, that is, there existsε<#comment/>>0\varepsilon >0such thate(I)≤<#comment/>d!(e(R)−<#comment/>ε<#comment/>)ℓ<#comment/>(R/I)e(I)\leq d!(e(R)-\varepsilon )\ell (R/I)for allm\mathfrak {m}-primary idealsI⊆<#comment/>RI\subseteq R. This answers a question raised by Huneke, Ma, Quy, and Smirnov [Adv. Math. 372 (2020), pp. 107296, 33]. We also obtain partial results towards improvements of Lech’s inequality when we fix the number of generators ofII.

     
    more » « less
  5. By discretizing an argument of Kislyakov, Naor and Schechtman proved that the 1-Wasserstein metric over the planar grid{0,1,…<#comment/>,n}2\{0,1,\dots , n\}^2hasL1L_1-distortion bounded below by a constant multiple oflog⁡<#comment/>n\sqrt {\log n}. We provide a new “dimensionality” interpretation of Kislyakov’s argument, showing that if{Gn}n=1∞<#comment/>\{G_n\}_{n=1}^\inftyis a sequence of graphs whose isoperimetric dimension and Lipschitz-spectral dimension equal a common numberδ<#comment/>∈<#comment/>[2,∞<#comment/>)\delta \in [2,\infty ), then the 1-Wasserstein metric overGnG_nhasL1L_1-distortion bounded below by a constant multiple of(log⁡<#comment/>|Gn|)1δ<#comment/>(\log |G_n|)^{\frac {1}{\delta }}. We proceed to compute these dimensions for⊘<#comment/>\oslash-powers of certain graphs. In particular, we get that the sequence of diamond graphs{Dn}n=1∞<#comment/>\{\mathsf {D}_n\}_{n=1}^\inftyhas isoperimetric dimension and Lipschitz-spectral dimension equal to 2, obtaining as a corollary that the 1-Wasserstein metric overDn\mathsf {D}_nhasL1L_1-distortion bounded below by a constant multiple oflog⁡<#comment/>|Dn|\sqrt {\log | \mathsf {D}_n|}. This answers a question of Dilworth, Kutzarova, and Ostrovskii and exhibits only the third sequence ofL1L_1-embeddable graphs whose sequence of 1-Wasserstein metrics is notL1L_1-embeddable.

     
    more » « less