skip to main content


Title: Seeing luminescence appear as crystals crumble. Isolation and subsequent self-association of individual [(C 6 H 11 NC) 2 Au] + ions in crystals
Non-luminescent, isostructural crystals of [(C 6 H 11 NC) 2 Au](EF 6 )·C 6 H 6 (E = As, Sb) lose benzene upon standing in air to produce green luminescent (E = As) or blue luminescent (E = Sb) powders. Previous studies have shown that the two-coordinate cation, [(C 6 H 11 NC) 2 Au] + , self-associates to form luminescent crystals that contain linear or nearly linear chains of cations and display unusual polymorphic, vapochromic, and/or thermochromic properties. Here, we report the formation of non-luminescent crystalline salts in which individual [(C 6 H 11 NC) 2 Au] + ions are isolated from one another. In [(C 6 H 11 NC) 2 Au](BArF 24 ) ((BArF 24 ) − is tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) each cation is surrounded by two anions that prohibit any close approach of the gold ions. Crystallization of [(C 6 H 11 NC) 2 Au](EF 6 ) (E = As or Sb, but not P) from benzene solution produces colorless, non-emissive crystals of the solvates [(C 6 H 11 NC) 2 Au](EF 6 )·C 6 H 6 . These two solvates are isostructural and contain columns in which cations and benzene molecules alternate. With the benzene molecules separating the cations, the shortest distances between gold ions are 6.936(2) Å for E = As and 6.9717(19) Å for E = Sb. Upon removal from the mother liquor, these crystals crack due to the loss of benzene from the crystal and form luminescent powders. Crystals of [(C 6 H 11 NC) 2 Au](SbF 6 )·C 6 H 6 that powder out form a pale yellow powder with a blue luminescence with emission spectra and powder X-ray diffraction data that show that the previously characterized [(C 6 H 11 NC) 2 Au](SbF 6 ) is formed. In the process, the distances between the gold( i ) ions decrease to ∼3 Å and half of the cyclohexyl groups move from an axial orientation to an equatorial one. Remarkably, when crystals of [(C 6 H 11 NC) 2 Au](AsF 6 )·C 6 H 6 stand in air, they lose benzene and are converted into the yellow, green-luminescent polymorph of [(C 6 H 11 NC) 2 Au](AsF 6 ) rather than the colorless, blue-luminescent polymorph. Paradoxically, the yellow, green-luminescent powder that forms as well as authentic crystals of the yellow, green-luminescent polymorph of [(C 6 H 11 NC) 2 Au](AsF 6 ) are sensitive to benzene vapor and are converted by exposure to benzene vapor into the colorless, blue-luminescent polymorph.  more » « less
Award ID(s):
1807637
NSF-PAR ID:
10272481
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
11
Issue:
43
ISSN:
2041-6520
Page Range / eLocation ID:
11705 to 11713
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The discovery of a third, non-luminescent crystalline polymorph of [(C 6 H 11 NC) 2 Au]PF 6 is reported. Remarkably, crystals of this polymorph are sensitive to mechanical pressure or to exposure to dichloromethane vapor. In both cases, the conversion produces the yellow, green luminescent polymorph of [(C 6 H 11 NC) 2 Au]PF 6 and not the colorless, blue luminescent polymorph. 
    more » « less
  2. We report results of the optical properties of Dy-doped CsPbCl3and KPb2Cl5bulk crystals for potential applications in yellow solid-state laser development. The crystals were synthesized from purified starting materials and melt-grown by vertical Bridgman technique. Optical transmission measurements revealed characteristic absorption bands from intra-4f transitions of Dy3+ions. Direct optical excitation at 455 nm (6H15/24I15/2) resulted in dominant yellow emission bands at ∼575 nm from the4F9/2excited state of Dy3+ions. In addition, both crystals exhibited weaker emission lines in the blue (∼483 nm) and red (∼670 nm) regions. The peak emission-cross sections for the yellow transition (4F9/26H13/2) were determined to be ∼0.22 × 10−20cm2for Dy: CsPbCl3peak = 576.5 nm) and ∼0.59 × 10−20cm2for Dy: KPb2Cl5peak = 574.5 nm). The spectral properties and decay dynamics of the4F9/2excited state were evaluated within the Judd-Ofelt theory to predict total radiative decay rates, branching ratios, and emission quantum efficiencies.

     
    more » « less
  3. null (Ed.)
    In this paper, the photoluminescent properties of a lead-free double perovskite Cs 2 NaInCl 6 doped with Sb 3+ are explored. The host crystal structure is a cubic double perovskite with Fm 3̄ m symmetry, a = 10.53344(4) Å, and rock salt ordering of Na + and In 3+ . It is a wide bandgap compound ( E g ≈ 5.1 eV), and substitution with Sb 3+ leads to strong absorption in the UV due to localized 5s 2 → 5s 1 5p 1 transitions on Sb 3+ centers. Radiative relaxation back to the 5s 2 ground state, via a 3 P 1 → 1 S 0 transition, leads to intense blue luminescence, centered at 445 nm, with a photoluminescent quantum yield of 79%. The Stokes shift of 0.94 eV is roughly 33% smaller than it is in the related vacancy ordered double perovskite Cs 2 SnCl 6 . The reduction in Stokes shift is likely due to a change in coordination number of Sb 3+ from 6-coordinate in Cs 2 NaInCl 6 to 5-coordinate in Cs 2 SnCl 6 . In addition to the high quantum yield, Cs 2 NaInCl 6 :Sb 3+ exhibits excellent air/moisture stability and can be prepared from solution; these characteristics make it a promising blue phosphor for applications involving near-UV excitation. 
    more » « less
  4. null (Ed.)
    Controlled energy transfer has been found to be one of the most effective ways of designing tunable and white photoluminescent phosphors. Utilizing host emission to achieve the same would lead to a new dimension in the design strategy for novel luminescent materials in solid state lighting and display devices. In this work, we have achieved controlled energy transfer by suppressing the host to dopant energy transfer in La 2 Hf 2 O 7 :Eu 3+ nanoparticles (NPs) by co-doping with uranium ions. Uranium acts as a barrier between the oxygen vacancies of the La 2 Hf 2 O 7 host and Eu 3+ doping ions to increase their separation and reduce the non-radiative energy transfer between them. Density functional theory (DFT) calculations of defect formation energy showed that the Eu 3+ dopant occupies the La 3+ site and the uranium ion occupies the Hf 4+ site. Co-doping the La 2 Hf 2 O 7 :Eu 3+ NPs with uranium ions creates negatively charged lanthanum and hafnium vacancies making the system highly electron rich. Formation of cation vacancies is expected to compensate the excess charge in the U and Eu co-doped La 2 Hf 2 O 7 NPs suppressing the formation of oxygen vacancies. This work shows how one can utilize the full color gamut in the La 2 Hf 2 O 7 :Eu 3+ ,U 6+ NPs with blue, green and red emissions from the host, uranium and europium, respectively, to produce near perfect white light emission. 
    more » « less
  5. Two multinary selenides, Ba8Hf2Se11(Se2) and Ba9Hf3Se14(Se2), with unprecedented structure types have been prepared using high-temperature synthesis techniques and represent the first known compounds in the Ba-Hf-Se system. Their structures were determined from single crystal X-ray diffraction (XRD) data. The Ba8Hf2Se11(Se2) compound crystallizes in the monoclinic C2/c space group with a = 12.3962(15) Å, b = 12.8928(15) Å, c = 18.1768(17) Å, and β = 90.685(4)°, while Ba9Hf3Se14(Se2) forms in the rhombohedral R space group with a = b = 19.4907(6) Å and c = 23.6407(11) Å. Both have pseudo-zero-dimensional structures with homoatomic Se–Se bonding in the form of (Se2)2− at distances of 2.400–2.402 Å. The structure of Ba8Hf2Se11(Se2) is comprised of [Hf2Se11]14−, Ba2+, and (Se2)2− dimers. Conversely, the Ba9Hf3Se14(Se2) structure contains a novel perovskite-type cluster constructed from eight octahedrally-coordinated Hf cations, i.e., [Hf8Se36]40−, and isolated [HfSe6]8− units which are separated by (Se2)2− dimers and Ba2+ cations. Polycrystalline Ba8Hf2Se11(Se2) is synthesized at 1073 K using a two-step solid-state synthesis method, with the co-formation of a small amount of a BaSe secondary phase. A direct bandgap of 2.2(2) eV is obtained for the polycrystalline sample of Ba8Hf2Se11(Se2), which is consistent with its yellow color. Density functional theory calculations reveal their bandgap transitions stem from predominantly filled Se-4p to empty Hf-5d at the edges of the valence bands (VB) and conduction bands (CB), respectively. The optical absorption coefficients are calculated to be relatively large, exceeding ∼105 cm−1 at about >2.0 eV with effective masses in the CB varying from ∼0.5 me (Γ → A) in Ba8Hf2Se11(Se2) to ∼1.0 me (Γ → L) in Ba9Hf3Se14(Se2). Thus, their optoelectronic properties are shown to be competitive with existing perovskite-type chalcogenides that have been a focus of recent research efforts. 
    more » « less