Yang, Ruihan; Yang, Yibo; Marino, Joseph; Mandt, Stephan
(, International Conference on Learning Representations)
null
(Ed.)
Recent work by Marino et al. (2020) showed improved performance in sequential density estimation by combining masked autoregressive flows with hierarchical latent variable models. We draw a connection between such autoregressive generative models and the task of lossy video compression. Specifically, we view recent neural video compression methods (Lu et al., 2019; Yang et al., 2020b; Agustsson et al., 2020) as instances of a generalized stochastic temporal autoregressive transform, and propose avenues for enhancement based on this insight. Comprehensive evaluations on large-scale video data show improved rate-distortion performance over both state-of-the-art neural and conventional video compression methods.
Zhang, Xiao; Chen, Jinghui; Gu, Quanquan; Evans, David
(, 23rd International Conference on Artificial Intelligence and Statistics)
Starting with Gilmer et al. (2018), several works have demonstrated the inevitability of adversarial examples based on different assumptions about the underlying input probability space. It remains unclear, however, whether these results apply to natural image distributions. In this work, we assume the underlying data distribution is captured by some conditional generative model, and prove intrinsic robustness bounds for a general class of classifiers, which solves an open problem in Fawzi et al. (2018). Building upon the state-of-the-art conditional generative models, we study the intrinsic robustness of two common image benchmarks under l2 perturbations, and show the existence of a large gap between the robustness limits implied by our theory and the adversarial robustness achieved by current state-of-the-art robust models.
Indyk, Piotr; Razenshteyn, Ilya P.; Wagner, Tal
(, Annual Conference on Neural Information Processing Systems)
We introduce a new distance-preserving compact representation of multi-dimensional point-sets. Given n points in a d-dimensional space where each coordinate is represented using B bits (i.e., dB bits per point), it produces a representation of size O( d log(d B/epsilon) +log n) bits per point from which one can approximate the distances up to a factor of 1 + epsilon. Our algorithm almost matches the recent bound of Indyk et al, 2017} while being much simpler. We compare our algorithm to Product Quantization (PQ) (Jegou et al, 2011) a state of the art heuristic metric compression method. We evaluate both algorithms on several data sets: SIFT, MNIST, New York City taxi time series and a synthetic one-dimensional data set embedded in a high-dimensional space. Our algorithm produces representations that are comparable to or better than those produced by PQ, while having provable guarantees on its performance.
Tian, Jiannan; Di, Sheng; Zhao, Kai; Rivera, Cody; Hickman Fulp, Megan; Underwood, Robert; Jin, Sian; Liang, Xin; Calhoun, Jon; Tao, Dingwen; et al
(, The 29th International Conference on Parallel Architectures and Compilation Techniques (PACT 2020))
Error-bounded lossy compression is a state-of-the-art data reduction technique for HPC applications because it not only significantly reduces storage overhead but also can retain high fidelity for postanalysis. Because supercomputers and HPC applications are becoming heterogeneous using accelerator-based architectures, in particular GPUs, several development teams have recently released GPU versions of their lossy compressors. However, existing state-of-the-art GPU-based lossy compressors suffer from either low compression and decompression throughput or low compression quality. In this paper, we present an optimized GPU version, cuSZ, for one of the best error-bounded lossy compressors-SZ. To the best of our knowledge, cuSZ is the first error-bounded lossy compressor on GPUs for scientific data. Our contributions are fourfold. (1) We propose a dual-quantization scheme to entirely remove the data dependency in the prediction step of SZ such that this step can be performed very efficiently on GPUs. (2) We develop an efficient customized Huffman coding for the SZ compressor on GPUs. (3) We implement cuSZ using CUDA and optimize its performance by improving the utilization of GPU memory bandwidth. (4) We evaluate our cuSZ on five real-world HPC application datasets from the Scientific Data Reduction Benchmarks and compare it with other state-of-the-art methods on both CPUs and GPUs. Experiments show that our cuSZ improves SZ's compression throughput by up to 370.1x and 13.1x, respectively, over the production version running on single and multiple CPU cores, respectively, while getting the same quality of reconstructed data. It also improves the compression ratio by up to 3.48x on the tested data compared with another state-of-the-art GPU supported lossy compressor.
Chamain, Lahiru D.; Qi, Siyu; Ding, Zhi
(, 29th European Signal Processing Conference (EUSIPCO))
Learning-based image/video codecs typically utilizethe well known auto-encoder structure where the encoder trans-forms input data to a low-dimensional latent representation.Efficient latent encoding can reduce bandwidth needs duringcompression for transmission and storage. In this paper, weexamine the effect of assigning high level coarse grouping labelsto each latent vector. Designing coding profiles for each latentgroup can achieve high compression encoding. We show thatsuch grouping can be learned via end-to-end optimization of thecodec and the deep learning (DL) model to optimize rate-accuracyfor a given data set. For cloud-based inference, source encodercan select a coding profile based on its learned grouping andencode the data features accordingly. Our test results on imageclassification show that significant performance improvementcan be achieved with learned grouping over its non-groupingcounterpart.
Yang, Yibo, Bamler, Robert, and Mandt, Stephan. Improving Inference for Neural Image Compression. Retrieved from https://par.nsf.gov/biblio/10272503. Advances in neural information processing systems .
Yang, Yibo, Bamler, Robert, and Mandt, Stephan.
"Improving Inference for Neural Image Compression". Advances in neural information processing systems (). Country unknown/Code not available. https://par.nsf.gov/biblio/10272503.
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.