skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Traveling surface undulation on a Ni-Mn-Ga single crystal elemen
Active materials couple a stimulus (electrical, magnetic, thermal) with a mechanical response. Typical materials such as piezoelectrics strain as bulk materials to the stimuli. Here we consider an undulation created by heterogeneous deformation within a magnetic shape memory alloy (MSM) transducer. We study the mechanical response of an MSM element vs. two surface treatments: a polished state with minimal surface stresses, and a micropeened state with compressive surface stress. The polished element had a sharp-featured, faceted trough shape. The micropeened element had a smooth trough shape and an additional crest. The undulation was created by a rotating localized magnetic field, which caused heterogeneous variation of the twin-microstructure. For the polished and micropeened elements, the twin-microstructures were coarse and fine, respectively. For the polished element, the undulation moved by the nucleation of a few twin boundaries, which traveled along the entire element. For the micropeened sample, the twin boundaries moved back and forth over a short distance, thereby creating a dense twin lamellar, which formed the trough. The motion of the lamellar approximated the single thick twin while allowing additional degrees of freedom due to increased mobile interface density and different initial conditions of domain volume fraction. The dense twin microstructure also smoothed the magnetic flux pattern. The undulation amplitude was about 40 μm for the sample in both treatments.  more » « less
Award ID(s):
1710640
PAR ID:
10272996
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Smart materials and structures
Volume:
30
ISSN:
1361-665X
Page Range / eLocation ID:
085001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ni–Mn–Ga Heusler alloys are multifunctional materials that demonstrate macroscopic strain under an externally applied magnetic field through the motion of martensite twin boundaries within the microstructure. This study sought to comprehensively characterize the microstructural, mechanical, thermal, and magnetic properties near the solidus in binder-jet 3D printed 14M Ni50Mn30Ga20. Neutron diffraction data were analyzed to identify the martensite modulation and observe the grain size evolution in samples sintered at temperatures of 1080 °C and 1090 °C. Large clusters of high neutron-count pixels in samples sintered at 1090 °C were identified, suggesting Bragg diffraction of large grains (near doubling in size) compared to 1080 °C sintered samples. The grain size was confirmed through quantitative stereology of polished surfaces for differently sintered and heat-treated samples. Nanoindentation testing revealed a greater resistance to plasticity and a larger elastic modulus in 1090 °C sintered samples (relative density ~95%) compared to the samples sintered at 1080 °C (relative density ~80%). Martensitic transformation temperatures were lower for samples sintered at 1090 °C than 1080 °C, though a further heat treatment step could be added to tailor the transformation temperature. Microstructurally, twin variants ≤10 μm in width were observed and the presence of magnetic anisotropy was confirmed through magnetic force microscopy. This study indicates that a 10 °C sintering temperature difference can largely affect the microstructure and mechanical properties (including elastic modulus and hardness) while still allowing for the presence of magnetic twin variants in the resulting modulated martensite. 
    more » « less
  2. Twin boundary (TB) strengthening in nanotwinned metals experiences a breakdown below a critical spacing at which softening takes over. Here, we survey a range of nanotwinned materials that possess different stacking fault energies (SFEs) and understand the TB strengthening limit using atomistic simulations. Distinct from Cu and Al, the nanotwinned, ultralow SFE materials (Co, NiCoCr, and NiCoCrFeMn) intriguingly exhibit a continuous strengthening down to a twin thickness of 0.63 nm. Examining dislocation slip mode and deformation microstructure, we find the hard dislocation modes persist even when reducing the twin boundary spacing to a nanometer regime. Meanwhile, the soft dislocation mode, which causes detwinning in Cu and Al, results in phase transformation and lamellar structure formation in Co, NiCoCr, and NiCoCrFeMn. This study, providing an enhanced understanding of dislocation mechanism in nanotwinned materials, demonstrates the potential for controlling mechanical behavior and ultimate strength with broadly tunable composition and SFE, especially in multi-principal element alloys. 
    more » « less
  3. Deformation twinning is a prevalent plastic deformation mode in hexagonal close-packed (HCP) materials, such as magnesium, titanium, and zirconium, and their alloys. Experimental observations indicate that these twins occur heterogeneously across the polycrystalline microstructure during deformation. Morphological and crystallographic distribution of twins in a deformed microstructure, or the so-called twinning microstructure, significantly controls material deformation behavior, ductility, formability, and failure response. Understanding the development of the twinning microstructure at the grain scale can benefit design efforts to optimize microstructures of HCP materials for specific high-performance structural applications. This article reviews recent research efforts that aim to relate the polycrystalline microstructure with the development of its twinning microstructure through knowledge of local stress fields, specifically local stresses produced by twins and at twin/grain–boundary intersections on the formation and thickening of twins, twin transmission across grain boundaries, twin–twin junction formation, and secondary twinning. 
    more » « less
  4. null (Ed.)
    The mechanical response and microstructure evolution in a rolled AZ31B magnesium alloy were experimentally characterized using companion thin-walled tubular specimens under free-end monotonic torsion. The tubular specimens were made with their axes along the normal direction of the rolled magnesium plate. The shear stress-shear strain response shows a subtle sigmodal shape that is composed of four distinctive stages of strain hardening. Basal slips and tension twinning are operated throughout the shear deformation. Both tension twinning and compressing twinning are favored. Growth and interaction of tension twins with multiple variants lead to formation of twin-twin boundaries (TTBs). The collective hardening effects by twin boundary (TB) and TTB result in a unique rise of the strain hardening rate in Stage II and III. In addition to primary twins, tension-compression double twins and tension-compression-tension tertiary twins with detectable sizes are observed in the tension-twin favorable grains whereas compression-tension double twins are detected in the tension-twin unfavorable grains; all of which become more observable with the increasing shear strain. During Stage IV deformation where TTB formation exhausts, non-basal prismatic slips become more significant and are responsible for the progressive decrease in strain hardening rate in this stage. Swift effect, which is commonly observed in textured materials, is evidenced under free-end torsion. The origin of Swift effect is confirmed to be dislocation slips at a shear strain less than 5% but is predominantly due to tension twinning at a larger plastic strain. 
    more » « less
  5. This study investigated the impact of low-temperature heat treatments on the mechanical and thermophysical properties of Cu-10Sn alloys fabricated by a laser powder bed fusion (LPBF) additive manufacturing (AM) process. The microstructure, phase structure, and mechanical and thermal properties of the LPBF Cu-10Sn samples were comparatively investigated under both the as-fabricated (AF) condition and after low-temperature heat treatments at 140, 180, 220, 260, and 300 °C. The results showed that the low-temperature heat treatments did not significantly affect the phase and grain structures of the Cu-10Sn alloys. Both pre- and post-treatment samples displayed consistent grain sizes, with no obvious X-ray diffraction angle shift for the α phase, indicating that atom diffusion of the Sn element is beyond the detection resolution of X-ray diffractometers (XRD). However, the 180 °C heat-treated sample exhibited the highest hardness, while the AF samples had the lowest hardness, which was most likely due to the generation of precipitates according to thermodynamics modeling. Heat-treated samples also displayed higher thermal diffusivity values than their AF counterpart. The AF sample had the longest lifetime of ~0.19 nanoseconds (ns) in the positron annihilation lifetime spectroscopy (PALS) test, indicating the presence of the most atomic-level defects. 
    more » « less