skip to main content

Title: Examining the Effects of Anticipatory Robot Assistance on Human Decision Making
Collaborative robots that provide anticipatory assistance are able to help people complete tasks more quickly. As anticipatory assistance is provided before help is explicitly requested, there is a chance that this action itself will influence the person’s future decisions in the task. In this work, we investigate whether a robot’s anticipatory assistance can drive people to make choices different from those they would otherwise make. Such a study requires measuring intent, which itself could modify intent, resulting in an observer paradox. To combat this, we carefully designed an experiment to avoid this effect. We considered several mitigations such as the careful choice of which human behavioral signals we use to measure intent and designing unobtrusive ways to obtain these signals. We conducted a user study (𝑁=99) in which participants completed a collaborative object retrieval task: users selected an object and a robot arm retrieved it for them. The robot predicted the user’s object selection from eye gaze in advance of their explicit selection, and then provided either collaborative anticipation (moving toward the predicted object), adversarial anticipation (moving away from the predicted object), or no anticipation (no movement, control condition). We found trends and participant comments suggesting people’s decision making changes in the presence of a robot anticipatory motion and this change differs depending on the robot’s anticipation strategy.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Wagner, A.R.; null
Date Published:
Journal Name:
International Conference on Social Robotics (ICSR)
LNCS 12483
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Human-centered environments provide affordances for and require the use of two-handed, or bimanual, manipulations. Robots designed to function in, and physically interact with, these environments have not been able to meet these requirements because standard bimanual control approaches have not accommodated the diverse, dynamic, and intricate coordinations between two arms to complete bimanual tasks. In this work, we enabled robots to more effectively perform bimanual tasks by introducing a bimanual shared-control method. The control method moves the robot’s arms to mimic the operator’s arm movements but provides on-the-fly assistance to help the user complete tasks more easily. Our method used a bimanual action vocabulary, constructed by analyzing how people perform two-hand manipulations, as the core abstraction level for reasoning about how to assist in bimanual shared autonomy. The method inferred which individual action from the bimanual action vocabulary was occurring using a sequence-to-sequence recurrent neural network architecture and turned on a corresponding assistance mode, signals introduced into the shared-control loop designed to make the performance of a particular bimanual action easier or more efficient. We demonstrate the effectiveness of our method through two user studies that show that novice users could control a robot to complete a range of complex manipulation tasks more successfully using our method compared to alternative approaches. We discuss the implications of our findings for real-world robot control scenarios. 
    more » « less
  2. Using the context of human-supervised object collection tasks, we explore policies for a robot to seek assistance from a human supervisor and avoid loss of human trust in the robot. We consider a human-robot interaction scenario in which a mobile manipulator chooses to collect objects either autonomously or through human assistance; while the human supervisor monitors the robot’s operation, assists when asked, or intervenes if the human perceives that the robot may not accomplish its goal. We design an optimal assistance-seeking policy for the robot using a Partially Observable Markov Decision Process (POMDP) setting in which human trust is a hidden state and the objective is to maximize collaborative performance. We conduct two sets of human-robot interaction experiments. The data from the first set of experiments is used to estimate POMDP parameters, which are used to compute an optimal assistance-seeking policy that is used in the second experiment. For most participants, the estimated POMDP reveals that humans are more likely to intervene when their trust is low and the robot is performing a high-complexity task; and that the robot asking for assistance in high-complexity tasks can increase human trust in the robot. Our experimental results show that the proposed trust-aware policy yields superior performance compared with an optimal trust-agnostic policy. 
    more » « less
  3. Several recent studies have demonstrated the promise of deep visuomotor policies for robot manipulator control. Despite impressive progress, these systems are known to be vulnerable to physical disturbances, such as accidental or adversarial bumps that make them drop the manipulated object. They also tend to be distracted by visual disturbances such as objects moving in the robot’s field of view, even if the disturbance does not physically prevent the execution of the task. In this paper, we propose an approach for augmenting a deep visuomotor policy trained through demonstrations with Task Focused visual Attention (TFA). The manipulation task is specified with a natural language text such as “move the red bowl to the left”. This allows the visual attention component to concentrate on the current object that the robot needs to manipulate. We show that even in benign environments, the TFA allows the policy to consistently outperform a variant with no attention mechanism. More importantly, the new policy is significantly more robust: it regularly recovers from severe physical disturbances (such as bumps causing it to drop the object) from which the baseline policy, i.e. with no visual attention, almost never recovers. In addition, we show that the proposed policy performs correctly in the presence of a wide class of visual disturbances, exhibiting a behavior reminiscent of human selective visual attention experiments. 
    more » « less
  4. Collaborative robots that work alongside humans will experience service breakdowns and make mistakes. These robotic failures can cause a degradation of trust between the robot and the community being served. A loss of trust may impact whether a user continues to rely on the robot for assistance. In order to improve the teaming capabilities between humans and robots, forms of communication that aid in developing and maintaining trust need to be investigated. In our study, we identify four forms of communication which dictate the timing of information given and type of initiation used by a robot. We investigate the effect that these forms of communication have on trust with and without robot mistakes during a cooperative task. Participants played a memory task game with the help of a humanoid robot that was designed to make mistakes after a certain amount of time passed. The results showed that participants' trust in the robot was better preserved when that robot offered advice only upon request as opposed to when the robot took initiative to give advice. 
    more » « less
  5. Background

    In Physical Human–Robot Interaction (pHRI), the need to learn the robot’s motor-control dynamics is associated with increased cognitive load. Eye-tracking metrics can help understand the dynamics of fluctuating mental workload over the course of learning.


    The aim of this study was to test eye-tracking measures’ sensitivity and reliability to variations in task difficulty, as well as their performance-prediction capability, in physical human–robot collaboration tasks involving an industrial robot for object comanipulation.


    Participants (9M, 9F) learned to coperform a virtual pick-and-place task with a bimanual robot over multiple trials. Joint stiffness of the robot was manipulated to increase motor-coordination demands. The psychometric properties of eye-tracking measures and their ability to predict performance was investigated.


    Stationary Gaze Entropy and pupil diameter were the most reliable and sensitive measures of workload associated with changes in task difficulty and learning. Increased task difficulty was more likely to result in a robot-monitoring strategy. Eye-tracking measures were able to predict the occurrence of success or failure in each trial with 70% sensitivity and 71% accuracy.


    The sensitivity and reliability of eye-tracking measures was acceptable, although values were lower than those observed in cognitive domains. Measures of gaze behaviors indicative of visual monitoring strategies were most sensitive to task difficulty manipulations, and should be explored further for the pHRI domain where motor-control and internal-model formation will likely be strong contributors to workload.


    Future collaborative robots can adapt to human cognitive state and skill-level measured using eye-tracking measures of workload and visual attention.

    more » « less