The purpose of this study was to use 3D motion capture and stretchable soft robotic sensors (SRS) to collect foot-ankle movement on participants performing walking gait cycles on flat and sloped surfaces. The primary aim was to assess differences between 3D motion capture and a new SRS-based wearable solution. Given the complex nature of using a linear solution to accurately quantify the movement of triaxial joints during a dynamic gait movement, 20 participants performing multiple walking trials were measured. The participant gait data was then upscaled (for the SRS), time-aligned (based on right heel strikes), and smoothed using filtering methods. A multivariate linear model was developed to assess goodness-of-fit based on mean absolute error (MAE; 1.54), root mean square error (RMSE; 1.96), and absolute R2 (R2; 0.854). Two and three SRS combinations were evaluated to determine if similar fit scores could be achieved using fewer sensors. Inversion (based on MAE and RMSE) and plantar flexion (based on R2) sensor removal provided second-best fit scores. Given that the scores indicate a high level of fit, with further development, an SRS-based wearable solution has the potential to measure motion during gait- based tasks with the accuracy of a 3D motion capture system. 
                        more » 
                        « less   
                    
                            
                            Dyskinesia estimation during activities of daily living using wearable motion sensors and deep recurrent networks
                        
                    
    
            Abstract Levodopa-induced dyskinesias are abnormal involuntary movements experienced by the majority of persons with Parkinson’s disease (PwP) at some point over the course of the disease. Choreiform as the most common phenomenology of levodopa-induced dyskinesias can be managed by adjusting the dose/frequency of PD medication(s) based on a PwP’s motor fluctuations over a typical day. We developed a sensor-based assessment system to provide such information. We used movement data collected from the upper and lower extremities of 15 PwPs along with a deep recurrent model to estimate dyskinesia severity as they perform different activities of daily living (ADL). Subjects performed a variety of ADLs during a 4-h period while their dyskinesia severity was rated by the movement disorder experts. The estimated dyskinesia severity scores from our model correlated highly with the expert-rated scores ( r = 0.87 ( p < 0.001)), which was higher than the performance of linear regression that is commonly used for dyskinesia estimation ( r = 0.81 ( p < 0.001)). Our model provided consistent performance at different ADLs with minimum r = 0.70 (during walking) to maximum r = 0.84 (drinking) in comparison to linear regression with r = 0.00 (walking) to r = 0.76 (cutting food). These findings suggest that when our model is applied to at-home sensor data, it can provide an accurate picture of changes of dyskinesia severity facilitating effective medication adjustments. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1936586
- PAR ID:
- 10273057
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The development of wearable technology, which enables motion tracking analysis for human movement outside the laboratory, can improve awareness of personal health and performance. This study used a wearable smart sock prototype to track foot–ankle kinematics during gait movement. Multivariable linear regression and two deep learning models, including long short-term memory (LSTM) and convolutional neural networks, were trained to estimate the joint angles in sagittal and frontal planes measured by an optical motion capture system. Participant-specific models were established for ten healthy subjects walking on a treadmill. The prototype was tested at various walking speeds to assess its ability to track movements for multiple speeds and generalize models for estimating joint angles in sagittal and frontal planes. LSTM outperformed other models with lower mean absolute error (MAE), lower root mean squared error, and higher R -squared values. The average MAE score was less than 1.138° and 0.939° in sagittal and frontal planes, respectively, when training models for each speed and 2.15° and 1.14° when trained and evaluated for all speeds. These results indicate wearable smart socks to generalize foot–ankle kinematics over various walking speeds with relatively low error and could consequently be used to measure gait parameters without the need for a lab-constricted motion capture system.more » « less
- 
            Parkinson’s disease (PD) is a movement disorder caused by a dopamine deficit in the brain. Current therapies primarily focus on dopamine modulators or replacements, such as levodopa. Although dopamine replacement can help alleviate PD symptoms, therapies targeting the underlying neurodegenerative process are limited. The study objective was to use artificial intelligence to rank the most promising repurposed drug candidates for PD. Natural language processing (NLP) techniques were used to extract text relationships from 33+ million biomedical journal articles from PubMed and map relationships between genes, proteins, drugs, diseases, etc., into a knowledge graph. Cross-domain text mining, hub network analysis, and unsupervised learning rank aggregation were performed in SemNet 2.0 to predict the most relevant drug candidates to levodopa and PD using relevance-based HeteSim scores. The top predicted adjuvant PD therapies included ebastine, an antihistamine for perennial allergic rhinitis; levocetirizine, another antihistamine; vancomycin, a powerful antibiotic; captopril, an angiotensin-converting enzyme (ACE) inhibitor; and neramexane, an N-methyl-D-aspartate (NMDA) receptor agonist. Cross-domain text mining predicted that antihistamines exhibit the capacity to synergistically alleviate Parkinsonian symptoms when used with dopamine modulators like levodopa or levodopa–carbidopa. The relationship patterns among the identified adjuvant candidates suggest that the likely therapeutic mechanism(s) of action of antihistamines for combatting the multi-factorial PD pathology include counteracting oxidative stress, amending the balance of neurotransmitters, and decreasing the proliferation of inflammatory mediators. Finally, cross-domain text mining interestingly predicted a strong relationship between PD and liver disease.more » « less
- 
            Accurate balance assessment is important in healthcare for identifying and managing conditions affecting stability and coordination. It plays a key role in preventing falls, understanding movement disorders, and designing appropriate therapeutic interventions across various age groups and medical conditions. However, traditional balance assessment methods often suffer from subjectivity, lack of comprehensive balance assessments and remote assessment capabilities, and reliance on specialized equipment and expert analysis. In response to these challenges, our study introduces an innovative approach for estimating scores on the Modified Clinical Test of Sensory Interaction on Balance (m-CTSIB). Utilizing wearable sensors and advanced machine learning algorithms, we offer an objective, accessible, and efficient method for balance assessment. We collected comprehensive movement data from 34 participants under four different sensory conditions using an array of inertial measurement unit (IMU) sensors coupled with a specialized system to evaluate ground truth m-CTSIB balance scores for our analysis. This data was then preprocessed, and an extensive array of features was extracted for analysis. To estimate the m-CTSIB scores, we applied Multiple Linear Regression (MLR), Support Vector Regression (SVR), and XGBOOST algorithms. Our subject-wise Leave-One-Out and 5-Fold cross-validation analysis demonstrated high accuracy and a strong correlation with ground truth balance scores, validating the effectiveness and reliability of our approach. Key insights were gained regarding the significance of specific movements, feature selection, and sensor placement in balance estimation. Notably, the XGBOOST model, utilizing the lumbar sensor data, achieved outstanding results in both methods, with Leave-One-Out cross-validation showing a correlation of 0.96 and a Mean Absolute Error (MAE) of 0.23 and 5-fold cross-validation showing comparable results with a correlation of 0.92 and an MAE of 0.23, confirming the model’s consistent performance. This finding underlines the potential of our method to revolutionize balance assessment practices, particularly in settings where traditional methods are impractical or inaccessible.more » « less
- 
            Objective: Determine relationships between college students’ student loan presence and self-rated physical and mental health, major medical problems, mental health conditions, physical, dental, and mental health care visits and delays, and medication use and reductions. Participants: A total of 3,248 undergraduates at two regional public U.S. universities, surveyed Spring 2017. Methods: OLS and Logistic regression. Results: Loan presence was related to significantly worse self-rated physical and mental health and more major medical problems, but not to mental health conditions, or physical or mental health medication use. Respondents with loans were less likely to visit the dentist and more likely to report delaying medical, dental, and mental health care, and reducing medication use to save money. Conclusions: Results provide evidence of health and health care use divides among college students by loan presence.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    