Tyrosine kinase inhibitors (TKIs) are prescribed for chronic myeloid leukemia (CML) and some other cancers. The objective was to predict and rank TKI-related adverse events (AEs), including under-reported or preclinical AEs, using novel text mining. First, k-means clustering of 2575 clinical CML TKI abstracts separated TKIs by significant (p < 0.05) AE type: gastrointestinal (bosutinib); edema (imatinib); pulmonary (dasatinib); diabetes (nilotinib); cardiovascular (ponatinib). Next, we propose a novel cross-domain text mining method utilizing a knowledge graph, link prediction, and hub node network analysis to predict new relationships. Cross-domain text mining of 30+ million articles via SemNet predicted and ranked known and novel TKI AEs. Three physiology-based tiers were formed using unsupervised rank aggregation feature importance. Tier 1 ranked in the top 1%: hematology (anemia, neutropenia, thrombocytopenia, hypocellular marrow); glucose (diabetes, insulin resistance, metabolic syndrome); iron (deficiency, overload, metabolism), cardiovascular (hypertension, heart failure, vascular dilation); thyroid (hypothyroidism, hyperthyroidism, parathyroid). Tier 2 ranked in the top 5%: inflammation (chronic inflammatory disorder, autoimmune, periodontitis); kidney (glomerulonephritis, glomerulopathy, toxic nephropathy). Tier 3 ranked in the top 10%: gastrointestinal (bowel regulation, hepatitis, pancreatitis); neuromuscular (autonomia, neuropathy, muscle pain); others (secondary cancers, vitamin deficiency, edema). Results suggest proactive TKI patient AE surveillance levels: regular surveillance for tier 1, infrequent surveillance for tier 2, and symptom-based surveillance for tier 3. 
                        more » 
                        « less   
                    
                            
                            Literature-Based Discovery Predicts Antihistamines Are a Promising Repurposed Adjuvant Therapy for Parkinson’s Disease
                        
                    
    
            Parkinson’s disease (PD) is a movement disorder caused by a dopamine deficit in the brain. Current therapies primarily focus on dopamine modulators or replacements, such as levodopa. Although dopamine replacement can help alleviate PD symptoms, therapies targeting the underlying neurodegenerative process are limited. The study objective was to use artificial intelligence to rank the most promising repurposed drug candidates for PD. Natural language processing (NLP) techniques were used to extract text relationships from 33+ million biomedical journal articles from PubMed and map relationships between genes, proteins, drugs, diseases, etc., into a knowledge graph. Cross-domain text mining, hub network analysis, and unsupervised learning rank aggregation were performed in SemNet 2.0 to predict the most relevant drug candidates to levodopa and PD using relevance-based HeteSim scores. The top predicted adjuvant PD therapies included ebastine, an antihistamine for perennial allergic rhinitis; levocetirizine, another antihistamine; vancomycin, a powerful antibiotic; captopril, an angiotensin-converting enzyme (ACE) inhibitor; and neramexane, an N-methyl-D-aspartate (NMDA) receptor agonist. Cross-domain text mining predicted that antihistamines exhibit the capacity to synergistically alleviate Parkinsonian symptoms when used with dopamine modulators like levodopa or levodopa–carbidopa. The relationship patterns among the identified adjuvant candidates suggest that the likely therapeutic mechanism(s) of action of antihistamines for combatting the multi-factorial PD pathology include counteracting oxidative stress, amending the balance of neurotransmitters, and decreasing the proliferation of inflammatory mediators. Finally, cross-domain text mining interestingly predicted a strong relationship between PD and liver disease. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1944247
- PAR ID:
- 10502321
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- International Journal of Molecular Sciences
- Volume:
- 24
- Issue:
- 15
- ISSN:
- 1422-0067
- Page Range / eLocation ID:
- 12339
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Link prediction in artificial intelligence is used to identify missing links or derive future relationships that can occur in complex networks. A link prediction model was developed using the complex heterogeneous biomedical knowledge graph, SemNet, to predict missing links in biomedical literature for drug discovery. A web application visualized knowledge graph embeddings and link prediction results using TransE, CompleX, and RotatE based methods. The link prediction model achieved up to 0.44 hits@10 on the entity prediction tasks. The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as COVID-19, served as a case study to demonstrate the efficacy of link prediction modeling for drug discovery. The link prediction algorithm guided identification and ranking of repurposed drug candidates for SARS-CoV-2 primarily by text mining biomedical literature from previous coronaviruses, including SARS and middle east respiratory syndrome (MERS). Repurposed drugs included potential primary SARS-CoV-2 treatment, adjunctive therapies, or therapeutics to treat side effects. The link prediction accuracy for nodes ranked highly for SARS coronavirus was 0.875 as calculated by human in the loop validation on existing COVID-19 specific data sets. Drug classes predicted as highly ranked include anti-inflammatory, nucleoside analogs, protease inhibitors, antimalarials, envelope proteins, and glycoproteins. Examples of highly ranked predicted links to SARS-CoV-2: human leukocyte interferon, recombinant interferon-gamma, cyclosporine, antiviral therapy, zidovudine, chloroquine, vaccination, methotrexate, artemisinin, alkaloids, glycyrrhizic acid, quinine, flavonoids, amprenavir, suramin, complement system proteins, fluoroquinolones, bone marrow transplantation, albuterol, ciprofloxacin, quinolone antibacterial agents, and hydroxymethylglutaryl-CoA reductase inhibitors. Approximately 40% of identified drugs were not previously connected to SARS, such as edetic acid or biotin. In summary, link prediction can effectively suggest repurposed drugs for emergent diseases.more » « less
- 
            The goal of this paper is to use graph theory network measures derived from non-invasive electroencephalography (EEG) to develop neural decoders that can differentiate Parkinson's disease (PD) patients from healthy controls (HC). EEG signals from 27 patients and 27 demographically matched controls from New Mexico were analyzed by estimating their functional networks. Data recorded from the patients during ON and OFF levodopa sessions were included in the analysis for comparison. We used betweenness centrality of estimated functional networks to classify the HC and PD groups. The classifiers were evaluated using leave-one-out cross-validation. We observed that the PD patients (on and off medication) could be distinguished from healthy controls with 89% accuracy – approximately 4% higher than the state-of-the-art on the same dataset. This work shows that brain network analysis using extracranial resting-state EEG can discover patterns of interactions indicative of PD. This approach can also be extended to other neurological disorders.more » « less
- 
            Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common neurodegenerative disorders related to aging. Though several risk factors are shared between these two diseases, the exact relationship between them is still unknown. In this paper, we analyzed how these two diseases relate to each other from the genomic, epigenomic, and transcriptomic viewpoints. Using an extensive literature mining, we first accumulated the list of genes from major genome-wide association (GWAS) studies. Based on these GWAS studies, we observed that only one gene (HLA-DRB5) was shared between AD and PD. A subsequent literature search identified a few other genes involved in these two diseases, among which SIRT1 seemed to be the most prominent one. While we listed all the miRNAs that have been previously reported for AD and PD separately, we found only 15 different miRNAs that were reported in both diseases. In order to get better insights, we predicted the gene co-expression network for both AD and PD using network analysis algorithms applied to two GEO datasets. The network analysis revealed six clusters of genes related to AD and four clusters of genes related to PD; however, there was very low functional similarity between these clusters, pointing to insignificant similarity between AD and PD even at the level of affected biological processes. Finally, we postulated the putative epigenetic regulator modules that are common to AD and PD.more » « less
- 
            IntroductionParkinson’s disease (PD) is a neurodegenerative disorder affecting millions of patients. Closed-Loop Deep Brain Stimulation (CL-DBS) is a therapy that can alleviate the symptoms of PD. The CL-DBS system consists of an electrode sending electrical stimulation signals to a specific region of the brain and a battery-powered stimulator implanted in the chest. The electrical stimuli in CL-DBS systems need to be adjusted in real-time in accordance with the state of PD symptoms. Therefore, fast and precise monitoring of PD symptoms is a critical function for CL-DBS systems. However, the current CL-DBS techniques suffer from high computational demands for real-time PD symptom monitoring, which are not feasible for implanted and wearable medical devices. MethodsIn this paper, we present an energy-efficient neuromorphic PD symptom detector using memristive three-dimensional integrated circuits (3D-ICs). The excessive oscillation at beta frequencies (13–35 Hz) at the subthalamic nucleus (STN) is used as a biomarker of PD symptoms. ResultsSimulation results demonstrate that our neuromorphic PD detector, implemented with an 8-layer spiking Long Short-Term Memory (S-LSTM), excels in recognizing PD symptoms, achieving a training accuracy of 99.74% and a validation accuracy of 99.52% for a 75%–25% data split. Furthermore, we evaluated the improvement of our neuromorphic CL-DBS detector using NeuroSIM. The chip area, latency, energy, and power consumption of our CL-DBS detector were reduced by 47.4%, 66.63%, 65.6%, and 67.5%, respectively, for monolithic 3D-ICs. Similarly, for heterogeneous 3D-ICs, employing memristive synapses to replace traditional Static Random Access Memory (SRAM) resulted in reductions of 44.8%, 64.75%, 65.28%, and 67.7% in chip area, latency, and power usage. DiscussionThis study introduces a novel approach for PD symptom evaluation by directly utilizing spiking signals from neural activities in the time domain. This method significantly reduces the time and energy required for signal conversion compared to traditional frequency domain approaches. The study pioneers the use of neuromorphic computing and memristors in designing CL-DBS systems, surpassing SRAM-based designs in chip design area, latency, and energy efficiency. Lastly, the proposed neuromorphic PD detector demonstrates high resilience to timing variations in brain neural signals, as confirmed by robustness analysis.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    