skip to main content


Title: Streaming instability with multiple dust species – I. Favourable conditions for the linear growth
ABSTRACT A recent study suggests that the streaming instability, one of the leading mechanisms for driving the formation of planetesimals, may not be as efficient as previously thought. Under some disc conditions, the growth time-scale of the instability can be longer than the disc lifetime when multiple dust species are considered. To further explore this finding, we use both linear analysis and direct numerical simulations with gas fluid and dust particles to mutually validate and study the unstable modes of the instability in more detail. We extend the previously studied parameter space by one order of magnitude in both the range of the dust-size distribution [Ts, min, Ts, max] and the total solid-to-gas mass ratio ε and introduce a third dimension with the slope q of the size distribution. We find that the fast-growth regime and the slow-growth regime are distinctly separated in the ε–Ts, max space, while this boundary is not appreciably sensitive to q or Ts, min. With a wide range of dust sizes present in the disc (e.g. Ts, min ≲ 10−3), the growth rate in the slow-growth regime decreases as more dust species are considered. With a narrow range of dust sizes (e.g. Ts, max/Ts, min = 5), on the other hand, the growth rate in most of the ε–Ts, max space is converged with increasing dust species, but the fast and the slow growth regimes remain clearly separated. Moreover, it is not necessary that the largest dust species dominate the growth of the unstable modes, and the smaller dust species can affect the growth rate in a complicated way. In any case, we find that the fast-growth regime is bounded by ε ≳ 1 or Ts, max ≳ 1, which may represent the favourable conditions for planetesimal formation.  more » « less
Award ID(s):
1753168
NSF-PAR ID:
10273107
Author(s) / Creator(s):
 ;  
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
501
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
467 to 482
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The streaming instability is a fundamental process that can drive dust–gas dynamics and ultimately planetesimal formation in protoplanetary discs. As a linear instability, it has been shown that its growth with a distribution of dust sizes can be classified into two distinct regimes, fast- and slow-growth, depending on the dust-size distribution and the total dust-to-gas density ratio ϵ. Using numerical simulations of an unstratified disc, we bring three cases in different regimes into non-linear saturation. We find that the saturation states of the two fast-growth cases are similar to its single-species counterparts. The one with maximum dimensionless stopping time τs,max = 0.1 and ϵ = 2 drives turbulent vertical dust–gas vortices, while the other with τs,max = 2 and ϵ = 0.2 leads to radial traffic jams and filamentary structures of dust particles. The dust density distribution for the former is flat in low densities, while the one for the latter has a low-end cut-off. By contrast, the one slow-growth case results in a virtually quiescent state. Moreover, we find that in the fast-growth regime, significant dust segregation by size occurs, with large particles moving towards dense regions while small particles remain in the diffuse regions, and the mean radial drift of each dust species is appreciably altered from the (initial) drag-force equilibrium. The former effect may skew the spectral index derived from multiwavelength observations and change the initial size distribution of a pebble cloud for planetesimal formation. The latter along with turbulent diffusion may influence the radial transport and mixing of solid materials in young protoplanetary discs. 
    more » « less
  2. null (Ed.)
    ABSTRACT We develop simple, physically motivated models for drag-induced dust–gas streaming instabilities, which are thought to be crucial for clumping grains to form planetesimals in protoplanetary discs. The models explain, based on the physics of gaseous epicyclic motion and dust–gas drag forces, the most important features of the streaming instability and its simple generalization, the disc settling instability. Some of the key properties explained by our models include the sudden change in the growth rate of the streaming instability when the dust-to-gas mass ratio surpasses one, the slow growth rate of the streaming instability compared to the settling instability for smaller grains, and the main physical processes underlying the growth of the most unstable modes in different regimes. As well as providing helpful simplified pictures for understanding the operation of an interesting and fundamental astrophysical fluid instability, our models may prove useful for analysing simulations and developing non-linear theories of planetesimal growth in discs. 
    more » « less
  3. ABSTRACT

    Young protostellar discs are likely to be both self-gravitating, and to support grain growth to sizes where the particles decoupled from the gas. This combination could lead to short-wavelength fragmentation of the solid component in otherwise non-fragmenting gas discs, forming Earth-mass solid cores during the Class 0/I stages of young stellar object evolution. We use three-dimensional smoothed particle hydrodynamics simulations of two-fluid discs, in the regime where the Stokes number of the particles St > 1, to study how the formation of solid clumps depends on the disc-to-star mass ratio, the strength of gravitational instability, and the Stokes number. Gravitational instability of the simulated discs is sustained by local cooling. We find that the ability of the spiral structures to concentrate solids increases with the cooling time and decreases with the Stokes number, while the relative dynamical temperature between gas and dust of the particles decreases with the cooling time and the disc-to-star mass ratio and increases with the Stokes number. Dust collapse occurs in a subset of high disc mass simulations, yielding clumps whose mass is close to linear theory estimates, namely 1–10 M⊕. Our results suggest that if planet formation occurs via this mechanism, the best conditions correspond to near the end of the self-gravitating phase, when the cooling time is long and the Stokes number close to unity.

     
    more » « less
  4. ABSTRACT

    Partial dust obscuration in active galactic nuclei (AGNs) has been proposed as a potential explanation for some cases of AGN variability. The dust–gas mixture present in AGN tori is accelerated by radiation pressure, leading to the launching of an AGN wind. Dust under these conditions has been shown to be unstable to a generic class of fast-growing resonant drag instabilities (RDIs). In this work, we present the first numerical simulations of radiation-driven outflows that explicitly include dust dynamics in conditions resembling AGN winds. We investigate the implications of RDIs on the torus morphology, AGN variability, and the ability of radiation to effectively launch a wind. We find that the RDIs rapidly develop, reaching saturation at times much shorter than the global time-scales of the outflows, resulting in the formation of filamentary structure on box-size scales with strong dust clumping and super-Alfvénic velocity dispersions. The instabilities lead to fluctuations in dust opacity and gas column density of 10–20  per cent when integrated along mock observed lines of sight to the quasar accretion disc. These fluctuations occur over year to decade time-scales and exhibit a red-noise power spectrum commonly observed for AGNs. Additionally, we find that the radiation effectively couples with the dust–gas mixture, launching highly supersonic winds that entrain 70–90  per cent of the gas, with a factor of ≲3 photon momentum loss relative to the predicted multiple-scattering momentum loading rate. Therefore, our findings suggest that RDIs play an important role in driving the clumpy nature of AGN tori and generating AGN variability consistent with observations.

     
    more » « less
  5. ABSTRACT

    Recent observations indicate that mm/cm-sized grains may exist in the embedded protostellar discs. How such large grains grow from the micron size (or less) in the earliest phase of star formation remains relatively unexplored. In this study, we take a first step to model the grain growth in the protostellar environment, using 2D (axisymmetric) radiation hydrodynamic and grain growth simulations. We show that the grain growth calculations can be greatly simplified by the ‘terminal velocity approximation’, where the dust drift velocity relative to the gas is proportional to its stopping time, which is proportional to the grain size. We find that the grain–grain collision from size-dependent terminal velocity alone is too slow to convert a significant fraction of the initially micron-sized grains into mm/cm sizes during the deeply embedded Class 0 phase. Substantial grain growth is achieved when the grain–grain collision speed is enhanced by a factor of 4. The dust growth above and below the disc midplane enables the grains to settle faster towards the midplane, which increases the local dust-to-gas ratio, which, in turn, speeds up further growth there. How this needed enhancement can be achieved is unclear, although turbulence is a strong possibility that deserves further exploration.

     
    more » « less