skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient Global Sensitivity Analysis of Model-Based Ultrasonic Nondestructive Testing Systems Using Machine Learning and Sobol’ Indices
Abstract The objective of this work is to reduce the cost of performing model-based sensitivity analysis for ultrasonic nondestructive testing systems by replacing the accurate physics-based model with machine learning (ML) algorithms and quickly compute Sobol’ indices. The ML algorithms considered in this work are neural networks (NNs), convolutional NN (CNNs), and deep Gaussian processes (DGPs). The performance of these algorithms is measured by the root mean-squared error on a fixed number of testing points and by the number of high-fidelity samples required to reach a target accuracy. The algorithms are compared on three ultrasonic testing benchmark cases with three uncertainty parameters, namely, spherically void defect under a focused and a planar transducer and spherical-inclusion defect under a focused transducer. The results show that NNs required 35, 100, and 35 samples for the three cases, respectively. CNNs required 35, 100, and 56, respectively, while DGPs required 84, 84, and 56, respectively.  more » « less
Award ID(s):
1846862
PAR ID:
10273113
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
Volume:
4
Issue:
4
ISSN:
2572-3901
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Paszynski, M.; Kranzlmüller, D.; Krzhizhanovskaya, V.V.; Dongarra, J.J.; Sloot, P.M. (Ed.)
    Global sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based model in this work. This introduces the additional challenge of finding the minimum number of training data samples required to train the NNs accurately. In this work, a new method is introduced to accurately quantify the GSA values by iterating over both the number of samples required to train the NNs, terminated using an outer-loop sensitivity convergence criteria, and the number of model responses required to calculate the GSA, terminated with an inner-loop sensitivity convergence criteria. The iterative surrogate-based GSA guarantees converged values for the Sobol’ indices and, at the same time, alleviates the specification of arbitrary accuracy metrics for the surrogate model. The proposed method is demonstrated in two cases, namely, an eight-variable borehole function and a three-variable nondestructive testing (NDT) case. For the borehole function, both the first- and total-order Sobol’ indices required 200 and 105 data points to terminate on the outer- and inner-loop sensitivity convergence criteria, respectively. For the NDT case, these values were 100 for both first- and total-order indices for the outer-loop sensitivity convergence, and 106 and 103 for the inner-loop sensitivity convergence, respectively, for the first- and total-order indices, on the inner-loop sensitivity convergence. The differences of the proposed method with GSA on the true functions are less than 3% in the analytical case and less than 10% in the physics-based case (where the large error comes from small Sobol’ indices). 
    more » « less
  2. This paper presents experimental results on differentiating between healthy wheat plants and plants infected with Fusarium Head Blight (FHB) based on sensing the ambient gases in the plant environment using a gravimetric electronic nose enabled by a functionalized capacitive micromachined ultrasonic transducer (CMUT) array and machine learning (ML) algorithms. The CMUT sensor array is functionalized with organic/inorganic materials to capture disease-related volatile signals. The sensor data is processed and analyzed using ML algorithms for accurate plant classification. Experimental results demonstrate the effectiveness of the proposed approach in achieving high accuracy for plant disease detection at the end of the 11th day after plant inoculation. 
    more » « less
  3. Multi-parametric photoacoustic microscopy (PAM) is uniquely capable of simultaneous high-resolution mapping of blood oxygenation and flowin vivo. However, its speed has been limited by the dense sampling required for blood flow quantification. To overcome this limitation, we have developed a high-speed multi-parametric PAM system, which enables simultaneous acquisition of ∼500 densely sampled B-scans by superposing the rapid optical scanning across the line-shaped focus of a cylindrically focused ultrasonic transducer over the conventional mechanical scan of the optical-acoustic dual foci. A novel, to the best of our knowledge, optical-acoustic combiner (OAC) is designed and implemented to accommodate the short working distance of the transducer, enabling convenient confocal alignment of the dual foci in reflection mode. A resonant galvanometer (GM) provides stabilized high-speed large-angle scanning. This new system can continuously monitor microvascular blood oxygenation (sO2) and flow over a 4.5 × 3 mm2area in the awake mouse brain with high spatial and temporal resolutions (6.9 µm and 0.3 Hz, respectively). 
    more » « less
  4. Abstract In this work, a novel multifidelity machine learning (ML) algorithm, the gradient-enhanced multifidelity neural networks (GEMFNN) algorithm, is proposed. This is a multifidelity extension of the gradient-enhanced neural networks (GENN) algorithm as it uses both function and gradient information available at multiple levels of fidelity to make function approximations. Its construction is similar to the multifidelity neural networks (MFNN) algorithm. The proposed algorithm is tested on three analytical functions, a one, two, and a 20 variable function. Its performance is compared to the performance of neural networks (NN), GENN, and MFNN, in terms of the number of samples required to reach a global accuracy of 0.99 of the coefficient of determination (R2). The results showed that GEMFNN required 18, 120, and 600 high-fidelity samples for the one, two, and 20 dimensional cases, respectively, to meet the target accuracy. NN performed best on the one variable case, requiring only ten samples, while GENN worked best on the two variable case, requiring 120 samples. GEMFNN worked best for the 20 variable case, while requiring nearly eight times fewer samples than its nearest competitor, GENN. For this case, NN and MFNN did not reach the target global accuracy even after using 10,000 high-fidelity samples. This work demonstrates the benefits of using gradient as well as multifidelity information in NN for high-dimensional problems. 
    more » « less
  5. Activity Recognition (AR) models perform well with a large number of available training instances. However, in the presence of sensor heterogeneity, sensing biasness and variability of human behaviors and activities and unseen activity classes pose key challenges to adopting and scaling these pre-trained activity recognition models in the new environment. These challenging unseen activities recognition problems are addressed by applying transfer learning techniques that leverage a limited number of annotated samples and utilize the inherent structural patterns among activities within and across the source and target domains. This work proposes a novel AR framework that uses the pre-trained deep autoencoder model and generates features from source and target activity samples. Furthermore, this AR frame-work establishes correlations among activities between the source and target domain by exploiting intra- and inter-class knowledge transfer to mitigate the number of labeled samples and recognize unseen activities in the target domain. We validated the efficacy and effectiveness of our AR framework with three real-world data traces (Daily and Sports, Opportunistic, and Wisdm) that contain 41 users and 26 activities in total. Our AR framework achieves performance gains ≈ 5-6% with 111, 18, and 70 activity samples (20 % annotated samples) for Das, Opp, and Wisdm datasets. In addition, our proposed AR framework requires 56, 8, and 35 fewer activity samples (10% fewer annotated examples) for Das, Opp, and Wisdm, respectively, compared to the state-of-the-art Untran model. 
    more » « less