skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cross-Domain Unseen Activity Recognition Using Transfer Learning
Activity Recognition (AR) models perform well with a large number of available training instances. However, in the presence of sensor heterogeneity, sensing biasness and variability of human behaviors and activities and unseen activity classes pose key challenges to adopting and scaling these pre-trained activity recognition models in the new environment. These challenging unseen activities recognition problems are addressed by applying transfer learning techniques that leverage a limited number of annotated samples and utilize the inherent structural patterns among activities within and across the source and target domains. This work proposes a novel AR framework that uses the pre-trained deep autoencoder model and generates features from source and target activity samples. Furthermore, this AR frame-work establishes correlations among activities between the source and target domain by exploiting intra- and inter-class knowledge transfer to mitigate the number of labeled samples and recognize unseen activities in the target domain. We validated the efficacy and effectiveness of our AR framework with three real-world data traces (Daily and Sports, Opportunistic, and Wisdm) that contain 41 users and 26 activities in total. Our AR framework achieves performance gains ≈ 5-6% with 111, 18, and 70 activity samples (20 % annotated samples) for Das, Opp, and Wisdm datasets. In addition, our proposed AR framework requires 56, 8, and 35 fewer activity samples (10% fewer annotated examples) for Das, Opp, and Wisdm, respectively, compared to the state-of-the-art Untran model.  more » « less
Award ID(s):
1750936
PAR ID:
10406629
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)
Page Range / eLocation ID:
684 to 693
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The success and impact of activity recognition algorithms largely depends on the availability of the labeled training samples and adaptability of activity recognition models across various domains. In a new environment, the pre-trained activity recognition models face challenges in presence of sensing bias- ness, device heterogeneities, and inherent variabilities in human behaviors and activities. Activity Recognition (AR) system built in one environment does not scale well in another environment, if it has to learn new activities and the annotated activity samples are scarce. Indeed building a new activity recognition model and training the model with large annotated samples often help overcome this challenging problem. However, collecting annotated samples is cost-sensitive and learning activity model at wild is computationally expensive. In this work, we propose an activity recognition framework, UnTran that utilizes source domains' pre-trained autoencoder enabled activity model that transfers two layers of this network to generate a common feature space for both source and target domain activities. We postulate a hybrid AR framework that helps fuse the decisions from a trained model in source domain and two activity models (raw and deep-feature based activity model) in target domain reducing the demand of annotated activity samples to help recognize unseen activities. We evaluated our framework with three real-world data traces consisting of 41 users and 26 activities in total. Our proposed UnTran AR framework achieves ≈ 75% F1 score in recognizing unseen new activities using only 10% labeled activity data in the target domain. UnTran attains ≈ 98% F1 score while recognizing seen activities in presence of only 2-3% of labeled activity samples. 
    more » « less
  2. We investigate the problem of making human activity recognition (AR) scalable-i.e., allowing AR classifiers trained in one context to be readily adapted to a different contextual domain. This is important because AR technologies can achieve high accuracy if the classifiers are trained for a specific individual or device, but show significant degradation when the same classifier is applied context-e.g., to a different device located at a different on-body position. To allow such adaptation without requiring the onerous step of collecting large volumes of labeled training data in the target domain, we proposed a transductive transfer learning model that is specifically tuned to the properties of convolutional neural networks (CNNs). Our model, called HDCNN, assumes that the relative distribution of weights in the different CNN layers will remain invariant, as long as the set of activities being monitored does not change. Evaluation on real-world data shows that HDCNN is able to achieve high accuracy even without any labeled training data in the target domain, and offers even higher accuracy (significantly outperforming competitive shallow and deep classifiers) when even a modest amount of labeled training data is available. 
    more » « less
  3. null (Ed.)
    Human activity recognition (HAR) from wearable sensors data has become ubiquitous due to the widespread proliferation of IoT and wearable devices. However, recognizing human activity in heterogeneous environments, for example, with sensors of different models and make, across different persons and their on-body sensor placements introduces wide range discrepancies in the data distributions, and therefore, leads to an increased error margin. Transductive transfer learning techniques such as domain adaptation have been quite successful in mitigating the domain discrepancies between the source and target domain distributions without the costly target domain data annotations. However, little exploration has been done when multiple distinct source domains are present, and the optimum mapping to the target domain from each source is not apparent. In this paper, we propose a deep Multi-Source Adversarial Domain Adaptation (MSADA) framework that opportunistically helps select the most relevant feature representations from multiple source domains and establish such mappings to the target domain by learning the perplexity scores. We showcase that the learned mappings can actually reflect our prior knowledge on the semantic relationships between the domains, indicating that MSADA can be employed as a powerful tool for exploratory activity data analysis. We empirically demonstrate that our proposed multi-source domain adaptation approach achieves 2% improvement with OPPORTUNITY dataset (cross-person heterogeneity, 4 ADLs), whereas 13% improvement on DSADS dataset (cross-position heterogeneity, 10 ADLs and sports activities). 
    more » « less
  4. Human activity recognition (HAR) from wearable sensor data has recently gained widespread adoption in a number of fields. However, recognizing complex human activities, postural and rhythmic body movements (e.g., dance, sports) is challenging due to the lack of domain-specific labeling information, the perpetual variability in human movement kinematics profiles due to age, sex, dexterity and the level of professional training. In this paper, we propose a deep activity recognition model to work with limited labeled data, both for simple and complex human activities. To mitigate the intra- and inter-user spatio-temporal variability of movements, we posit novel data augmentation and domain normalization techniques. We depict a semi-supervised technique that learns noise and transformation invariant feature representation from sparsely labeled data to accommodate intra-personal and inter-user variations of human movement kinematics. We also postulate a transfer learning approach to learn domain invariant feature representations by minimizing the feature distribution distance between the source and target domains. We showcase the improved performance of our proposed framework, AugToAct, using a public HAR dataset. We also design our own data collection, annotation and experimental setup on complex dance activity recognition steps and kinematics movements where we achieved higher performance metrics with limited label data compared to simple activity recognition tasks. 
    more » « less
  5. null (Ed.)
    Recent years have witnessed a growing body of research on autonomous activity recognition models for use in deployment of mobile systems in new settings such as when a wearable system is adopted by a new user. Current research, however, lacks comprehensive frameworks for transfer learning. Specifically, it lacks the ability to deal with partially available data in new settings. To address these limitations, we propose {\it OptiMapper}, a novel uninformed cross-subject transfer learning framework for activity recognition. OptiMapper is a combinatorial optimization framework that extracts abstract knowledge across subjects and utilizes this knowledge for developing a personalized and accurate activity recognition model in new subjects. To this end, a novel community-detection-based clustering of unlabeled data is proposed that uses the target user data to construct a network of unannotated sensor observations. The clusters of these target observations are then mapped onto the source clusters using a complete bipartite graph model. In the next step, the mapped labels are conditionally fused with the prediction of a base learner to create a personalized and labeled training dataset for the target user. We present two instantiations of OptiMapper. The first instantiation, which is applicable for transfer learning across domains with identical activity labels, performs a one-to-one bipartite mapping between clusters of the source and target users. The second instantiation performs optimal many-to-one mapping between the source clusters and those of the target. The many-to-one mapping allows us to find an optimal mapping even when the target dataset does not contain sufficient instances of all activity classes. We show that this type of cross-domain mapping can be formulated as a transportation problem and solved optimally. We evaluate our transfer learning techniques on several activity recognition datasets. Our results show that the proposed community detection approach can achieve, on average, 69%$ utilization of the datasets for clustering with an overall clustering accuracy of 87.5%. Our results also suggest that the proposed transfer learning algorithms can achieve up to 22.5% improvement in the activity recognition accuracy, compared to the state-of-the-art techniques. The experimental results also demonstrate high and sustained performance even in presence of partial data. 
    more » « less