Abstract The Bishop Tuff (BT), erupted from the Long Valley caldera in California, displays two types of geochemical gradients with temperature: one is related to magma mixing, whereas the other is found in the high-SiO2 rhyolite portion of the Bishop Tuff and is characterized by twofold or lower concentration variations in minor and trace elements that are strongly correlated with temperature. It is proposed that the latter zonation, which preceded phenocryst growth, developed as a result of mineral–melt partitioning between interstitial melt and surrounding crystals in a parental mush, from which variable melt fractions were segregated. To test this hypothesis, trends of increasing vs decreasing element concentrations with temperature (as a proxy for melt fraction), obtained from published data on single-clast pumice samples from the high-SiO2 rhyolite portion of the Bishop Tuff, were used to infer their relative degrees of incompatibility vs compatibility between crystals and melt in the parental mush. Relative compatibility values (RCVi) for all elements i, defined as the concentration slope with temperature divided by average concentration, are shown to be linearly correlated with their respective bulk partition coefficients (bulk Di). Mineral–melt partition coefficients from the literature were used to constrain the average stoichiometry of the crystallization/meltingmore »
Experimental Constraints on Dacite Magma Storage beneath Volcán Quizapu, Chile
Abstract Volcán Quizapu, Chile, is an under-monitored volcano that was the site of two historical eruptions: an effusive eruption in 1846–1847 and a Plinian eruption in 1932, both of which discharged ∼5 km3 (dense rock equivalent) of lava and/or tephra. The majority of material erupted in both cases is trachydacite, nearly identical for each event. We present H2O-saturated, phase equilibrium experiments on this end-member dacite magma, using a pumice sample from the 1932 eruption as the main starting material. At an oxygen fugacity (fO2) of ∼NNO + 0·2 (where NNO is the nickel–nickel oxide buffer), the phase assemblage of An25–30 plagioclase + amphibole + orthopyroxene, without biotite, is stable at 865 ± 10 °C and 110 ± 20 MPa H2O pressure (PH2O), corresponding to ∼4 km depth. At these conditions, experiments also reproduce the quenched glass composition of the starting pumice. At slightly higher PH2O and below 860 °C, biotite joins the equilibrium assemblage. Because biotite is not part of the observed Quizapu phase assemblage, its presence places an upper limit on PH2O. At the determined storage PH2O of ∼110 MPa, H2O undersaturation of the magma with XH2Ofluid = 0·87 would align Ptotal to mineral-based geobarometry estimates of ∼130 MPa. However, XH2Ofluid < 1 is not required to reproduce the Quizapu dacite phase more »
- Award ID(s):
- 1347880
- Publication Date:
- NSF-PAR ID:
- 10273230
- Journal Name:
- Journal of Petrology
- Volume:
- 62
- Issue:
- 5
- ISSN:
- 0022-3530
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Volcanic eruptions of rhyolitic magma often show shifts from powerful (Vulcanian to Plinian) explosive episodes to a more gentle effusion of viscous lava forming obsidian flows. Another prevailing characteris-tic of these eruptions is the presence of pyroclastic obsidians intermingled with the explosive tephra. This dense, juvenile product is similar to the tephra and obsidian flow in composition, but is generally less degassed than its flow counterpart. The formation mechanism(s) of pyroclastic obsidians and the information they can provide concerning the extent to which magma degassing modulates the eruptive style of rhyolitic eruptions are currently subject to active research. Porous tephra and pyroclastic and flow obsidians from the 1060CE Glass Mountain rhyolitic eruption at Medicine Lake Volcano (California) were analyzed for their porosity, φ, water content, H2O, and hydrogen isotopic composition, δD. H2O in porous pyroclasts is correlated negatively with δD and positively with φ, indicating that the samples were affected by post-eruptive rehydration. Numerical modeling suggests that this rehydration occurred at an average rate of 10−23.5±0.5m2s−1during the ∼960 years since the eruption, causing some pyroclasts to gain up to 1 wt%of meteoric water. Pyroclastic and flow obsidians were not affected by rehydration due to their very low porosity. Comparison betweenmore »
-
Hydrogen is a rapidly diffusing monovalent cation in nominally anhydrous minerals (NAMs, such as olivine, orthopyroxene, and clinopyroxene), which is potentially re-equilibrated during silicate melt-rock and aqueous fluid-rock interactions in massif and abyssal peridotites. We apply a 3D numerical diffusion modeling technique to provide first-order timescales of complete hydrogen re-equilibration in olivine, clinopyroxene, and orthopyroxene over the temperature range 600-1200°C. Model crystals are 1-3 mm along the c-axis and utilize H+ diffusion coefficients appropriate for Fe-bearing systems. Two sets of models were run with different boundary compositions: 1) “low-H models” are constrained by mineral-melt equilibrium partitioning with a basaltic melt that has 0.75 wt% H2O and 2) “high-H models,” which utilize the upper end of the estimated range of mantle water solubility for each phase. Both sets of models yield re-equilibration timescales that are identical and are fast for all phases at a given temperature. These timescales have strong log-linear trends as a function of temperature (R2 from 0.97 to 0.99) that can be used to calculate expected re-equilibration time at a given temperature and grain size. At the high end of the model temperatures (1000-1200°C), H+ completely re-equilibrates in olivine, orthopyroxene, and clinopyroxene within minutes to hours, consistent withmore »
-
Abstract We present microbeam major- and trace-element data from 14 monzodiorites collected from the Malaspina Pluton (Fiordland, New Zealand) with the goal of evaluating processes involved in the production of andesites in lower arc crust. We focus on relict igneous assemblages consisting of plagioclase and amphibole with lesser amounts of clinopyroxene, orthopyroxene, biotite and quartz. These relict igneous assemblages are heterogeneously preserved in the lower crust within sheeted intrusions that display hypersolidus fabrics defined by alignment of unstrained plagioclase and amphibole. Trace-element data from relict igneous amphiboles in these rocks reveal two distinct groups: one relatively enriched in high field strength element concentrations and one relatively depleted. The enriched amphibole group has Zr values in the range of ∼25–110 ppm, Nb values of ∼5–32 ppm, and Th values up to 2·4 ppm. The depleted group, in contrast, shows Zr values <35 ppm and Nb values <0·25 ppm, and Th is generally below the level of detection. Amphibole crystallization temperatures calculated from major elements range from ∼960 to 830 °C for all samples in the pluton; however, we do not observe significant differences in the range of crystallization temperatures between enriched (∼960–840 °C) and depleted groups (∼940–830 °C). Bulk-rock Sr and Nd isotopes are also remarkably homogeneous and showmore »
-
Abstract Drilling related to development of the platinum-group element deposit of the J-M Reef of the Stillwater Complex returned samples of a rare chromitite seam between anorthosite and norite in a discordant anorthositic body. Plagioclase core An concentrations are marginally higher and modestly reversely zoned on the norite side (average Ancore = 83·8; average Ancore – Anrim = –1·1) as compared with the anorthosite side (average Ancore 82·5; average Ancore – Anrim = +1·0). The anorthosites are also characterized by a slightly smaller average plagioclase grain size than plagioclase in the norite (1·41 mm and 1·54 mm, respectively). The chromite can contain single and polyphase inclusions of orthopyroxene, plagioclase, amphibole, biotite and Cl-rich apatite. These and other compositional and textural features, as well as inference from other discordant anorthositic bodies in the Banded series, are all consistent with a chromatographic model of chromite precipitation at a reaction front as a norite protolith reacts with a Cl-rich aqueous fluid saturated in plagioclase alone. Chromitite seam formation is modeled using an infiltration metasomatic model, in which a fluid becomes progressively undersaturated in pyroxene as it rises into the hotter part of the crystal pile. As this pyroxene-undersaturated fluid moves through a noritic protolith, itmore »