skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental calibration of an Fe3+/Fe2+-in-amphibole oxybarometer and its application to shallow magmatic processes at Shiveluch Volcano, Kamchatka
Abstract Oxygen fugacity is an important but difficult parameter to constrain for primitive arc magmas. In this study, the partitioning behavior of Fe3+/Fe2+ between amphibole and glass synthesized in piston-cylinder and cold-seal apparatus experiments is developed as an oxybarometer, applicable to magmas ranging from basaltic to dacitic composition. The partitioning of Fe2+ is strongly dependent on melt polymerization; the relative compatibility of Fe2+ in amphibole decreases with increasing polymerization. The Fe2+/Mg distribution coefficient between amphibole and melt is a relatively constant value across all compositions and is, on average, 0.27. The amphibole oxybarometer is applied to amphibole in mafic enclaves, cumulates, and basaltic tephra erupted from Shiveluch volcano in Kamchatka with measured Fe3+/FeTotal. An average Fe3+/Fe2+ amphibole-glass distribution coefficient for basalt is used to convert the Fe3+/FeTotal of amphibole in samples from Shiveluch to magmatic oxygen fugacity relative to NNO. The fO2 of primitive melts at the volcano is approximately NNO+2 and is faithfully recorded in amphibole from an amphibole-rich cumulate and the basaltic tephra. Apparently, higher fO2 recorded by amphibole in mafic enclaves likely results from partial dehydrogenation of amphibole during residence in a shallow andesite storage region. We identify three pulses of mafic magma recharge within two weeks of, a month before, and two to three months before the eruption and find that, at each of these times, the host andesite was recharged by at least two magmas at varying stages of differentiation. Application of the amphibole oxybarometer not only gives insight into magmatic fO2 but also potentially details of shallow magmatic processes.  more » « less
Award ID(s):
2042452 2042386 2047960
PAR ID:
10409300
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
American Mineralogist
Volume:
107
Issue:
11
ISSN:
0003-004X
Page Range / eLocation ID:
2084 to 2100
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oxygen fugacity is an important but difficult parameter to constrain for primitive arc magmas. In this study, the partitioning behavior of Fe3+/Fe2+ between amphibole and glass synthesized in piston cylinder and cold-seal apparatus experiments is developed as an oxybarometer using x-ray absorption spectroscopy. The amphibole oxybarometer is applicable to hydrous magmas at subduction zone settings, and is here applied to amphibole in mafic enclaves, cumulates, and a basaltic tephra erupted from Shiveluch volcano in Kamchatka with measured Fe3+/FeTotal. The fO2 of primitive melts at the volcano is approximately NNO+2 and is faithfully recorded in amphibole from an amphibole-rich cumulate and the basaltic tephra. Apparently higher fO2 recorded by amphibole in mafic enclaves likely results from partial dehydrogenation of amphibole during residence in a shallow andesite storage region. Using a combination of the new oxybarometer and diffusion modeling, we identify three pulses of mafic magma recharge within two weeks of, a month before, and two to three months before eruption, and find that, at each of these times, the host andesite was recharged by at least two magmas at varying stages of differentiation. Application of the amphibole oxybarometer not only gives insight to magmatic fO2 but also potentially details of shallow magmatic processes. 
    more » « less
  2. null (Ed.)
    The oxygen fugacity (fO2) of the Earth’s upper mantle and its melting products is an important parameter in the geochemical evolution of arc magmas and their connection with the continental crustal construction and growth. Several works have focused on the fO2 of peridotite xenoliths, primitive melts in relatively young arc settings, and mid-ocean ridge basalts (MORB) but few studies have attempted to examine the early redox history of primitive magmas in mature arcs. Hence, our understanding of the nature and evolution of fO2 during the subduction cycle remains limited. Here, we investigate the basaltic tephra from the Los Hornitos monogenetic cones in central-southern Chile, which are among the most primitive materials reported in the Southern Andes (olivine Mg#  92.5, and Ni  5000 mgg1). These features offer a unique opportunity to explore the fO2 conditions below the Andean arc by studying olivine phenocrysts and their contained crystal and melt inclusions. We integrated EPMA, LA-ICP-MS, and m-XANES analyses to constrain the redox conditions recorded in the basaltic tephra by three different and self-reliant methods. First, we determined the fO2 based on the olivine-spinel equilibrium, yielding average values DFMQ + 1.3 ± 0.4 (1r). Second, we constrained the fO2 conditions of melt inclusions using Fe m-XANES data and the redox dependent olivine-melt vanadium partitioning. After correcting for post-entrapment crystallization and diffusive iron loss, the Fe m-XANES data indicate that the melt inclusions were trapped in average at DFMQ +2.5 ± 0.5 (1r). Results using the olivine-melt vanadium partitioning oxybarometer in melt inclusions are in agreement with Fe m-XANES data, yielding average DFMQ values of +2.6 ± 0.3 (1r). In order to test the potential effects of other postentrapment modifications of the melt inclusions that could have affected the fO2 prior to eruption, we assessed the residence time of these magmas using Mg-Fe interdiffusion modelling in olivine. The short residence times (<200 days) compared to vanadium re-equilibration models strongly suggest that the melt inclusions preserve the prevailing fO2 conditions during their entrapment. Correlations between melt inclusions major element composition and their fO2 determined by Fe m-XANES, as well as V/Sc modelling reveal a case of post-melting oxidation of the LHC magmas. We argue that primitive arc magmas behave as an open system with respect to fO2 during their early geochemical evolution. Our data indicate a complex fO2 early history of primitive melts in the southern Andes and provide a cautionary note on the direct extrapolation of primitive melts fO2 values to that of their mantle source. 
    more » « less
  3. This study evaluates changes in copper (Cu) speciation that occur in sulfate-dominated basaltic and andesitic magmas equilibrated at oxygen fugacities (fO2’s) above the nickel-nickel oxide (NNO) buffer. Cu K-edge microfocused X-ray absorption fine structure spectroscopy (XAFS) data are presented from both natural and synthetic silicate glasses. Natural samples analyzed include olivine-hosted melt inclusions from tephra of mafic cinder cones in the Lassen segment of the Cascade arc (USA) and from the Michoacan-Guanajuato volcanic field (Mexico) as representative samples from melts equilibrated at fO2 > NNO. A comparison with melts equilibrated at fO2 < NNO is provided by analysis of olivine-hosted melt inclusions from Kīlauea Volcano. Data are also presented from copper- and sulfur-bearing synthetic hydrous andesitic glasses synthesized over a range of fO2, from roughly NNO-2 to NNO+2. The Cu spectroscopy data from the natural and synthetic glasses show two dominant Cu species, Cu1+ oxides (referred to here as Cu-O) and Cu1+ sulfides (referred to here broadly as Cu-S, but not precluding Cu-Fe-S species). The relative proportion of each species present correlates with the relative concentration of dissolved sulfide in the melt. Synthetic sulfur-bearing glasses equilibrated at NNO-1.2 were found to contain exclusively Cu-S species. Sulfur-bearing experimental glasses equilibrated at NNO-0.5 give calculated Cu-O/(Cu-O + Cu-S), defined here as the “Cu-O fraction”, of < 0.10, whereas sulfur-bearing glasses synthesized at NNO+0.6 and NNO+1.8 give calculated Cu-O fraction > 0.96. Natural melt inclusions from Lassen and Kīlauea show a bimodal distribution in Cu-O fraction, with overlapping ranges, of 0.14-0.77 for Lassen and 0.18- 0.78 for Kīlauea. Michoacan-Guanajuato inclusions yield Cu-O fractions of 0.68-0.91. The difference in the calculated proportions of Cu-O to Cu-S species appear correlated with available sulfide in the melt. As relative S2- concentrations decrease, the dissolved Cu species in the melt evolves from dominantly Cu-S to Cu-O. This includes melts equilibrated at fO2’s where S6+ is the dominant S species. At intermediate sulfide abundances both species appear to coexist. Thermodynamic modeling of the Cu speciation in these silicate melts suggests that speciation of Cu as a CuFeS2 melt species (akin to chalcopyrite or intermediate solid solution) most accurately predicts the measured Cu species. The modeling suggests that aFeO in the silicate melt, fO2 and melt S2- (expressed as fS2) are the most important parameters controlling the proportions of Cu-O vs. Cu-S species. Our results provide a new perspective for understanding Cu solubility, transport, and partitioning in magmatic systems. 
    more » « less
  4. Titanium and Fe isotopic compositions of lavas from a calc-alkaline differentiation suite and corresponding mineral separates from the Rindjani Volcano, Indonesia show that Fe and Ti isotopic fractionations between minerals and melts are lower than those recorded in other suites at all stages of differentiation. The limited isotopic fractionation for Ti is likely due to low-Ti magnetite and clinopyroxene being the dominant carriers of Ti in Rindjani lavas, as these minerals are thought to have limited equilibrium Ti isotopic fractionation relative to silicate magmas. Other magmatic differentiation suites controlled by removal of Ti-rich magnetite and characterized by a lesser role of clinopyroxene have larger Ti isotopic fractionations. This effect is an indirect consequence of the elevated Fe3+/Fe2+ ratio of calc-alkaline magmas such as Rindjani, which promotes Fe3+ incorporation into magnetite at the expense of Fe2+-Ti4+ pairs, such that increased oxygen fugacity will subdue Ti isotopic fractionation in global magmatic series. Similarly, we find negligible Fe isotopic fractionation in Rindjani bulk rocks and mineral separates, unlike previous studies. This is also likely due to the oxidized nature of the Rindjani differentiation suite, which leads to similar Fe3+/Fe2+ ratios in melt and minerals and decreases overall mineral-melt Fe fractionation factors. Paired Ti and Fe isotopic analyses may therefore represent a powerful tool to assess oxygen fugacity during differentiation, independent from Fe 3+ determinations of erupted samples. 
    more » « less
  5. null (Ed.)
    Abstract Volcán Quizapu, Chile, is an under-monitored volcano that was the site of two historical eruptions: an effusive eruption in 1846–1847 and a Plinian eruption in 1932, both of which discharged ∼5 km3 (dense rock equivalent) of lava and/or tephra. The majority of material erupted in both cases is trachydacite, nearly identical for each event. We present H2O-saturated, phase equilibrium experiments on this end-member dacite magma, using a pumice sample from the 1932 eruption as the main starting material. At an oxygen fugacity (fO2) of ∼NNO + 0·2 (where NNO is the nickel–nickel oxide buffer), the phase assemblage of An25–30 plagioclase + amphibole + orthopyroxene, without biotite, is stable at 865 ± 10 °C and 110 ± 20 MPa H2O pressure (PH2O), corresponding to ∼4 km depth. At these conditions, experiments also reproduce the quenched glass composition of the starting pumice. At slightly higher PH2O and below 860 °C, biotite joins the equilibrium assemblage. Because biotite is not part of the observed Quizapu phase assemblage, its presence places an upper limit on PH2O. At the determined storage PH2O of ∼110 MPa, H2O undersaturation of the magma with XH2Ofluid = 0·87 would align Ptotal to mineral-based geobarometry estimates of ∼130 MPa. However, XH2Ofluid < 1 is not required to reproduce the Quizapu dacite phase assemblage and compositions. A second suite of experiments at lower fO2 shows that the stability fields of the hydrous silicates (amphibole and biotite) are significantly restricted at NNO – 2 relative to NNO + 0·2. Additional observations of Quizapu lava and pumice samples support the existing hypothesis that rapid pre-eruptive heating drove the effusive 1846–1847 eruption, with important refinements. We demonstrate that microlites in the end-member dacite lavas are consistent with in situ crystallization (during ascent), rather than transfer from an andesite. In one end-member dacite lava, newly identified reverse zoning in orthopyroxene and incipient destabilization of amphibole are consistent with small degrees of heating. Our work articulates a clear direction for future Quizapu studies, which are warranted given the active nature of the Cerro Azul–Descabezado Grande volcanic axis. 
    more » « less