skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Explore-then-Commit Algorithm for Submodular Maximization Under Full-bandit Feedback
We investigate the problem of combinatorial multi-armed bandits with stochastic submodular (in expectation) rewards and full-bandit feedback, where no extra information other than the reward of selected action at each time step is observed. We propose a simple algorithm, Explore-Then-Commit Greedy (ETCG) and prove that it achieves a -regret upper bound of for a horizon , number of base elements , and cardinality constraint . We also show in experiments with synthetic and real-world data that the ETCG empirically outperforms other full-bandit methods.  more » « less
Award ID(s):
2149588
PAR ID:
10400787
Author(s) / Creator(s):
Date Published:
Journal Name:
Uncertainty in artificial intelligence
Volume:
180
ISSN:
1525-3384
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cussens, James; Zhang, Kun (Ed.)
    We investigate the problem of combinatorial multi-armed bandits with stochastic submodular (in expectation) rewards and full-bandit feedback, where no extra information other than the reward of selected action at each time step $$t$$ is observed. We propose a simple algorithm, Explore-Then-Commit Greedy (ETCG) and prove that it achieves a $(1-1/e)$-regret upper bound of $$\mathcal{O}(n^\frac{1}{3}k^\frac{4}{3}T^\frac{2}{3}\log(T)^\frac{1}{2})$$ for a horizon $$T$$, number of base elements $$n$$, and cardinality constraint $$k$$. We also show in experiments with synthetic and real-world data that the ETCG empirically outperforms other full-bandit methods. 
    more » « less
  2. We investigate the problem of unconstrained combinatorial multi-armed bandits with full-bandit feedback and stochastic rewards for submodular maximization. Previous works investigate the same problem assuming a submodular and monotone reward function. In this work, we study a more general problem, i.e., when the reward function is not necessarily monotone, and the submodularity is assumed only in expectation. We propose Randomized Greedy Learning (RGL) algorithm and theoretically prove that it achieves a $$\frac{1}{2}$$-regret upper bound of $$\Tilde{\mathcal{O}}(n T^{\frac{2}{3}})$$ for horizon $$T$$ and number of arms $$n$$. We also show in experiments that RGL empirically outperforms other full-bandit variants in submodular and non-submodular settings. 
    more » « less
  3. We study variants of the online linear optimization (OLO) problem with bandit feedback, where the algorithm has access to external information about the unknown cost vector. Our motivation is the recent body of work on using such “hints” towards improving regret bounds for OLO problems in the full-information setting. Unlike in the full-information OLO setting, with bandit feedback, we first show that one cannot improve the standard regret bounds of O(\sqrt{T}) by using hints, even if they are always well-correlated with the cost vector. In contrast, if the algorithm is empowered to issue queries and if all the responses are correct, then we show O(\log(T)) regret is achievable. We then show how to make this result more robust — when some of the query responses can be adversarial — by using a little feedback on the quality of the responses. 
    more » « less
  4. We investigate the problem of unconstrained combinatorial multi-armed bandits with fullbandit feedback and stochastic rewards for submodular maximization. Previous works investigate the same problem assuming a submodular and monotone reward function. In this work, we study a more general problem, i.e., when the reward function is not necessarily monotone, and the submodularity is assumed only in expectation. We propose Randomized Greedy Learning (RGL) algorithm and theoretically prove that it achieves a 1 2 -regret upper bound of O˜(nT 2 3 ) for horizon T and number of arms n. We also show in experiments that RGL empirically outperforms other full-bandit variants in submodular and non-submodular settings. 
    more » « less
  5. This paper introduces unified projection-free Frank-Wolfe type algorithms for adversarial continuous DR-submodular optimization, spanning scenarios such as full information and (semi-)bandit feedback, monotone and non-monotone functions, different constraints, and types of stochastic queries. For every problem considered in the non-monotone setting, the proposed algorithms are either the first with proven sub-linear $$\alpha$$-regret bounds or have better $$\alpha$$-regret bounds than the state of the art, where $$\alpha$$ is a corresponding approximation bound in the offline setting. In the monotone setting, the proposed approach gives state-of-the-art sub-linear $$\alpha$$-regret bounds among projection-free algorithms in 7 of the 8 considered cases while matching the result of the remaining case. Additionally, this paper addresses semi-bandit and bandit feedback for adversarial DR-submodular optimization, advancing the understanding of this optimization area. 
    more » « less