skip to main content


Title: An Improved Ptychographic Algorithm for Multi-Pulse Phase Retrieval
We present a ptychographic phase retrieval algorithm which solves the square root problem in second order pulse measurement techniques and reconstructs the fields of multiple incoherent pulses simultaneously from a single dispersion scan trace.  more » « less
Award ID(s):
1903709
PAR ID:
10273454
Author(s) / Creator(s):
; ; ;
Editor(s):
B. Lee, C. Mazzali
Date Published:
Journal Name:
Frontiers in Optics
Page Range / eLocation ID:
FM2A.6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Entanglement entropy satisfies a first law-like relation, whichequates the first order perturbation of the entanglement entropy for theregion A A to the first order perturbation of the expectation value of the modularHamiltonian, \delta S_{A}=\delta \langle K_A \rangle δ S A = δ ⟨ K A ⟩ .We propose that this relation has a finer version which states that, thefirst order perturbation of the entanglement contour equals to the firstorder perturbation of the contour of the modular Hamiltonian,i.e.  \delta s_{A}(\textbf{x})=\delta \langle k_{A}(\textbf{x})\rangle δ s A ( 𝐱 ) = δ ⟨ k A ( 𝐱 ) ⟩ .Here the contour functions s_{A}(\textbf{x}) s A ( 𝐱 ) and k_{A}(\textbf{x}) k A ( 𝐱 ) capture the contribution from the degrees of freedom at \textbf{x} 𝐱 to S_{A} S A and K_A K A respectively. In some simple cases k_{A}(\textbf{x}) k A ( 𝐱 ) is determined by the stress tensor. We also evaluate the quantumcorrection to the entanglement contour using the fine structure of theentanglement wedge and the additive linear combination (ALC) proposalfor partial entanglement entropy (PEE) respectively. The fine structurepicture shows that, the quantum correction to the boundary PEE can beidentified as a bulk PEE of certain bulk region. While the shows thatthe quantum correction to the boundary PEE comes from the linearcombination of bulk entanglement entropy. We focus on holographictheories with local modular Hamiltonian and configurations of quantumfield theories where the applies. 
    more » « less
  2. We propose a set of functions that a user can invoke to analyze a program written in a C-like language: Assume() refers to a label in the source code or to a program part, and enables the user to make an assumption about the state of the program at some label or the function of some program part; Capture() refers to a label or a program part and returns an assertion about the state of the program at the label or the function of the program part; Verify() refers to a label or a program part and tests a unary assertion about the state of the program at the label or a binary assertion about the function of the program part; Establish() refers to a label or a program part and modifies the program code to make Verify() return TRUE at that label or program part, if it did not originally. We discuss the foundations of this tool as well as a preliminary implementation. 
    more » « less
  3. Mulzer, Wolfgang ; Phillips, Jeff M (Ed.)
    A Reeb graph is a graphical representation of a scalar function on a topological space that encodes the topology of the level sets. A Reeb space is a generalization of the Reeb graph to a multiparameter function. In this paper, we propose novel constructions of Reeb graphs and Reeb spaces that incorporate the use of a measure. Specifically, we introduce measure-theoretic Reeb graphs and Reeb spaces when the domain or the range is modeled as a metric measure space (i.e., a metric space equipped with a measure). Our main goal is to enhance the robustness of the Reeb graph and Reeb space in representing the topological features of a scalar field while accounting for the distribution of the measure. We first introduce a Reeb graph with local smoothing and prove its stability with respect to the interleaving distance. We then prove the stability of a Reeb graph of a metric measure space with respect to the measure, defined using the distance to a measure or the kernel distance to a measure, respectively. 
    more » « less
  4. null (Ed.)
    Recent surveys of Oahu’s Waianae Mountains uncovered a small, previously undescribed species of Auriculella that is conchologically similar to the three members of the A. perpusilla group all of which are endemic to the Koolau Mountain Range. However, sequence data demonstrate that the perpusilla group is not monophyletic. Moreover, the new species is not closely related to A. perpusilla or A. perversa , the only extant members of the group, but instead is sister to A. tenella , a species from the high spired A. castanea group. A neotype is designated for A. auricula , the type species of Auriculella ; all members of the conchologically similar perpusilla group are anatomically redescribed; and lectotypes designated for A. minuta , A. perversa , and A. tenella . The new species is described and compared to the type of the genus, members of the perpusilla group, and the genetically similar species A. tenella . 
    more » « less
  5. Aims. The light curve of the microlensing event KMT-2021-BLG-0240 exhibits a short-lasting anomaly with complex features near the peak at the 0.1 mag level from a single-lens single-source model. We conducted modeling of the lensing light curve under various interpretations to reveal the nature of the anomaly. Methods. It is found that the anomaly cannot be explained with the usual model based on a binary-lens (2L1S) or a binary-source (1L2S) interpretation. However, a 2L1S model with a planet companion can describe part of the anomaly, suggesting that the anomaly may be deformed by a tertiary lens component or a close companion to the source. From the additional modeling, we find that all the features of the anomaly can be explained with either a triple-lens (3L1S) model or a binary-lens binary-source (2L2S) model. However, it is difficult to validate the 2L2S model because the light curve does not exhibit signatures induced by the source orbital motion and the ellipsoidal variations expected by the close separation between the source stars according to the model. We, therefore, conclude that the two interpretations cannot be distinguished with the available data, and either can be correct. Results. According to the 3L1S solution, the lens is a planetary system with two sub-Jovian-mass planets in which the planets have masses of 0.32–0.47 M J and 0.44–0.93 M J , and they orbit an M dwarf host. According to the 2L2S solution, on the other hand, the lens is a single planet system with a mass of ~0.21 M J orbiting a late K-dwarf host, and the source is a binary composed of a primary of a subgiant or a turnoff star and a secondary of a late G dwarf. The distance to the planetary system varies depending on the solution: ~7.0 kpc according to the 3L1S solution and ~6.6 kpc according to the 2L2S solution. 
    more » « less