Impact of Geospatial Data Enhancements for Regional-Scale 2D Hydrodynamic Flood Modeling: Case Study for the Coastal Plain of Virginia
                        
                    - Award ID(s):
- 1810762
- PAR ID:
- 10273948
- Date Published:
- Journal Name:
- Journal of Hydrologic Engineering
- Volume:
- 26
- Issue:
- 4
- ISSN:
- 1084-0699
- Page Range / eLocation ID:
- 05021002
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            We are concerned with the suitability of the main models of compressible fluid dynamics for the Lighthill problem for shock diffraction by a convex corned wedge, by studying the regularity of solutions of the problem, which can be formulated as a free boundary problem. In this paper, we prove that there is no regular solution that is subsonic up to the wedge corner for potential flow. This indicates that, if the solution is subsonic at the wedge corner, at least a characteristic discontinuity (vortex sheet or entropy wave) is expected to be generated, which is consistent with the experimental and computational results. Therefore, the potential flow equation is not suitable for the Lighthill problem so that the compressible Euler system must be considered. In order to achieve the nonexistence result, a weak maximum principle for the solution is established, and several other mathematical techniques are developed. The methods and techniques developed here are also useful to the other problems with similar difficulties.more » « less
- 
            Stabilization of sulfate-rich expansive subgrade soils is a persistent cause of concern for transportation infrastructure engineers and practitioners. The application of traditional calcium-based stabilizers is generally not recommended for treating such soils because of the formation of deleterious reaction products such as ettringite. Sulfate-induced heaving causes severe structural damage to pavements and accounts for enormous expenditure from routine maintenance and rehabilitation activities. A research study was undertaken to evaluate the feasibility of using a metakaolin-based geopolymer (GP) for the treatment of sulfate-rich expansive soil. Laboratory studies were conducted on natural soil and artificially sulfate-rich soils, when treated with either lime or GP, to evaluate and compare the improvements in the engineering properties, including unconfined compressive strength, swelling and shrinkage, and resilient moduli characteristics over different curing periods. Microstructural studies, such as field emission scanning electron microscopy and X-ray diffraction, were performed on treated soils to detect the formation of reaction products. The engineering studies indicate that GP treatment enhanced strength and resilient moduli while suppressing ettringite formation and the associated swell–shrink potential of the treated soils. The microstructural studies showed that GP gels contribute to the improvement of these engineering properties through the formation of a uniform geopolymer matrix. In addition, the absence of a calcium source suppressed the formation of ettringite in the GP-treated soils. Overall, the findings indicate that GPs could be used as a potential alternative to existing traditional stabilizers for treating sulfate-rich expansive soils.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    