skip to main content


Title: C–H functionalization reactions enabled by hydrogen atom transfer to carbon-centered radicals
Selective functionalization of ubiquitous unactivated C–H bonds is a continuous quest for synthetic organic chemists. In addition to transition metal catalysis, which typically operates under a two-electron manifold, a recent renaissance in the radical approach relying on the hydrogen atom transfer (HAT) process has led to tremendous growth in the area. Despite several challenges, protocols proceeding via HAT are highly sought after as they allow for relatively easy activation of inert C–H bonds under mild conditions leading to a broader scope and higher functional group tolerance and sometimes complementary reactivity over methods relying on traditional transition metal catalysis. A number of methods operating via heteroatom-based HAT have been extensively reported over the past few years, while methods employing more challenging carbon analogues have been less explored. Recent developments of mild methodologies for generation of various carbon-centered radical species enabled their utilization in the HAT process, which, in turn, led to the development of remote C(sp 3 )–H functionalization reactions of alcohols, amines, amides and related compounds. This review covers mostly recent advances in C–H functionalization reactions involving the HAT step to carbon-centered radicals.  more » « less
Award ID(s):
1955663
NSF-PAR ID:
10273986
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chemical Science
Volume:
11
Issue:
48
ISSN:
2041-6520
Page Range / eLocation ID:
12974 to 12993
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The selective functionalization of remote C–H bonds via intramolecular hydrogen atom transfer (HAT) is transformative for organic synthesis. This radical-mediated strategy provides access to novel reactivity that is complementary to closed-shell pathways. As modern methods for mild generation of radicals are continually developed, inherent selectivity paradigms of HAT mechanisms offer unparalleled opportunities for developing new strategies for C–H functionalization. This review outlines the history, recent advances, and mechanistic underpinnings of intramolecular HAT as a guide to addressing ongoing challenges in this arena. 1 Introduction 2 Nitrogen-Centered Radicals 2.1 sp3 N-Radical Initiation 2.2 sp2 N-Radical Initiation 3 Oxygen-Centered Radicals 3.1 Carbonyl Diradical Initiation 3.2 Alkoxy Radical Initiation 3.3 Non-alkoxy Radical Initiation 4 Carbon-Centered Radicals 4.1 sp2 C-Radical Initiation 4.2 sp3 C-Radical Initiation 5 Conclusion 
    more » « less
  2. Abstract

    Photoredox catalysis has provided many approaches to C(sp3)–H functionalization that enable selective oxidation and C(sp3)–C bond formation via the intermediacy of a carbon-centered radical. While highly enabling, functionalization of the carbon-centered radical is largely mediated by electrophilic reagents. Notably, nucleophilic reagents represent an abundant and practical reagent class, motivating the interest in developing a general C(sp3)–H functionalization strategy with nucleophiles. Here we describe a strategy that transforms C(sp3)–H bonds into carbocations via sequential hydrogen atom transfer (HAT) and oxidative radical-polar crossover. The resulting carbocation is functionalized by a variety of nucleophiles—including halides, water, alcohols, thiols, an electron-rich arene, and an azide—to effect diverse bond formations. Mechanistic studies indicate that HAT is mediated by methyl radical—a previously unexplored HAT agent with differing polarity to many of those used in photoredox catalysis—enabling new site-selectivity for late-stage C(sp3)–H functionalization.

     
    more » « less
  3. null (Ed.)
    Conspectus By using transition metal catalysts, chemists have altered the “logic of chemical synthesis” by enabling the functionalization of carbon–hydrogen bonds, which have traditionally been considered inert. Within this framework, our laboratory has been fascinated by the potential for aldehyde C–H bond activation. Our approach focused on generating acyl-metal-hydrides by oxidative addition of the formyl C–H bond, which is an elementary step first validated by Tsuji in 1965. In this Account, we review our efforts to overcome limitations in hydroacylation. Initial studies resulted in new variants of hydroacylation and ultimately spurred the development of related transformations (e.g., carboacylation, cycloisomerization, and transfer hydroformylation). Sakai and co-workers demonstrated the first hydroacylation of olefins when they reported that 4-pentenals cyclized to cyclopentanones, using stoichiometric amounts of Wilkinson’s catalyst. This discovery sparked significant interest in hydroacylation, especially for the enantioselective and catalytic construction of cyclopentanones. Our research focused on expanding the asymmetric variants to access medium-sized rings (e.g., seven- and eight-membered rings). In addition, we achieved selective intermolecular couplings by incorporating directing groups onto the olefin partner. Along the way, we identified Rh and Co catalysts that transform dienyl aldehydes into a variety of unique carbocycles, such as cyclopentanones, bicyclic ketones, cyclohexenyl aldehydes, and cyclobutanones. Building on the insights gained from olefin hydroacylation, we demonstrated the first highly enantioselective hydroacylation of carbonyls. For example, we demonstrated that ketoaldehydes can cyclize to form lactones with high regio- and enantioselectivity. Following these reports, we reported the first intermolecular example that occurs with high stereocontrol. Ketoamides undergo intermolecular carbonyl hydroacylation to furnish α-acyloxyamides that contain a depsipeptide linkage. Finally, we describe how the key acyl-metal-hydride species can be diverted to achieve a C–C bond-cleaving process. Transfer hydroformylation enables the preparation of olefins from aldehydes by a dehomologation mechanism. Release of ring strain in the olefin acceptor offers a driving force for the isodesmic transfer of CO and H2. Mechanistic studies suggest that the counterion serves as a proton-shuttle to enable transfer hydroformylation. Collectively, our studies showcase how transition metal catalysis can transform a common functional group, in this case aldehydes, into structurally distinct motifs. Fine-tuning the coordination sphere of an acyl-metal-hydride species can promote C–C and C–O bond-forming reactions, as well as C–C bond-cleaving processes. 
    more » « less
  4. null (Ed.)
    While strategies involving a 2e − transfer pathway have dictated glycosylation development, the direct glycosylation of readily accessible glycosyl donors as radical precursors is particularly appealing because of high radical anomeric selectivity and atom- and step-economy. However, the development of the radical process has been challenging owing to notorious competing reduction, elimination and/or S N side reactions of commonly used, labile glycosyl donors. Here we introduce an organophotocatalytic strategy through which glycosyl bromides can be efficiently converted into corresponding anomeric radicals by photoredox mediated HAT catalysis without a transition metal or a directing group and achieve highly anomeric selectivity. The power of this platform has been demonstrated by the mild reaction conditions enabling the synthesis of challenging α-1,2- cis -thioglycosides, the tolerance of various functional groups and the broad substrate scope for both common pentoses and hexoses. Furthermore, this general approach is compatible with both sp 2 and sp 3 sulfur electrophiles and late-stage glycodiversification for a total of 50 substrates probed. 
    more » « less
  5. Abstract

    This personal account concerns novel recent discoveries in the area of mesoporous materials. Most of the papers discussed have been published within the last two to three years. A major emphasis of most of these papers is the synthesis of unique mesoporous materials by a variety of synthetic methods. Many of these articles focus on the control of the pore sizes and shapes of mesoporous materials. Synthetic methods of various types have been used for such control of porosity including soft templating, hard templating, nano‐casting, electrochemical methods, surface functionalization, and trapping of species in pores. The types of mesoporous materials range from carbon materials, metal oxides, metal sulfides, metal nitrides, carbonitriles, metal organic frameworks (MOFs), and composite materials. The vast majority of recent publications have centered around biological applications with a majority dealing with drug delivery systems. Several other bio‐based articles on mesoporous systems concern biomass conversion and biofuels, magnetic resonance imaging (MRI) studies, ultrasound therapy, enzyme immobilization, antigen targeting, biodegradation of inorganic materials, applications for improved digestion, and antitumor activity. Numerous nonbiological applications of mesoporous materials have been pursued recently. Some specific examples are photocatalysis, photo‐electrocatalysis, lithium ion batteries, heterogeneous catalysis, extraction of metals, extraction of lanthanide and actinide species, chiral separations and catalysis, capturing and the mode of binding of carbon dioxide (CO2), optical devices, and magneto‐optical devices. Of this latter class of applications, heterogeneous catalysis is predominant. Some of the types of catalytic reactions being pursued include hydrogen generation, selective oxidations, aminolysis, Suzuki coupling and other coupling reactions, oxygen reduction reactions (ORR), oxygen evolution reactions (OER), and bifunctional catalysis. For perspective, there have been over 40,000 articles on mesoporous materials published in the last 4 years and about 1388 reviews. By no means is this personal account thorough or all inclusive. One objective has been to choose a variety of articles of different types to obtain a flavor of the breadth of diversity involved in the area of mesoporous materials.

     
    more » « less