We use spherically symmetric hydrodynamic simulations to study the dynamical evolution and internal structure of superbubbles (SBs) driven by clustered supernovae (SNe), focusing on the effects of thermal conduction and cooling in the interface between the hot bubble interior and cooled shell. Our simulations employ an effective diffusivity to account for turbulent mixing from non-linear instabilities that are not captured in 1D. The conductive heat flux into the shell is balanced by a combination of cooling in the interface and evaporation of shell gas into the bubble interior. This evaporation increases the density, and decreases the temperature, of the SB interior by more than an order of magnitude relative to simulations without conduction. However, most of the energy conducted into the interface is immediately lost to cooling, reducing the evaporative mass flux required to balance conduction. As a result, the evaporation rate is typically a factor of ∼3–30 lower than predicted by the classical similarity solution of (Weaver et al. 1977), which neglects cooling. Blast waves from the first ∼30 SNe remain supersonic in the SB interior because reduced evaporation from the interface lowers the mass they sweep up in the hot interior. Updating the Weaver solution to include cooling, we construct a new analytic model to predict the cooling rate, evaporation rate, and temporal evolution of SBs. The cooling rate, and hence the hot gas mass, momentum, and energy delivered by SBs, is set by the ambient interstellar mass density and the efficiency of non-linear mixing at the bubble–shell interface.
- Award ID(s):
- 1813298
- PAR ID:
- 10274348
- Date Published:
- Journal Name:
- Galaxies
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2075-4434
- Page Range / eLocation ID:
- 56
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract We present an analytic model for clustered supernovae (SNe) feedback in galaxy disks, incorporating the dynamical evolution of superbubbles formed from spatially overlapping SNe remnants. We propose two realistic outcomes for the evolution of superbubbles in galactic disks: (1) the expansion velocity of the shock front falls below the turbulent velocity dispersion of the interstellar medium in the galaxy disk, whereupon the superbubble stalls and fragments, depositing its momentum entirely within the galaxy disk; or (2) the superbubble grows in size to reach the gas scale height, breaking out of the galaxy disk and driving galactic outflows/fountains. In either case, we find that superbubble breakup/breakout almost always occurs before the last Type II SN (≲40 Myr) in the recently formed star cluster, assuming a standard high-end initial mass function slope, and scalings between stellar lifetimes and masses. The threshold between these two cases implies a break in the effective strength of feedback in driving turbulence within galaxies, and a resulting change in the scalings of, for example, star formation rates with gas surface density (the Kennicutt–Schmidt relation) and the star formation efficiency in galaxy disks.
-
Abstract Galaxies are observed to host magnetic fields with a typical total strength of around 15
G. A coherent large-scale field constitutes up to a few microgauss of the total, while the rest is built from strong magnetic fluctuations over a wide range of spatial scales. This represents sufficient magnetic energy for it to be dynamically significant. Several questions immediately arise: What is the physical mechanism that gives rise to such magnetic fields? How do these magnetic fields affect the formation and evolution of galaxies? In which physical processes do magnetic fields play a role, and how can that role be characterized? Numerical modelling of magnetized flows in galaxies is playing an ever-increasing role in finding those answers. We review major techniques used for these models. Current results strongly support the conclusion that field growth occurs during the formation of the first galaxies on timescales shorter than their accretion timescales due to small-scale turbulent dynamos. The saturated small-scale dynamo maintains field strengths at only a few percent of equipartition with turbulence. This is in contradiction with the observed magnitude of turbulent fields, but may be reconciled by the further contribution to the turbulent field of the large-scale dynamo. The subsequent action of large-scale dynamos in differentially rotating discs produces field strengths observed in low redshift galaxies, where it reaches equipartition with the turbulence and has substantial power at large scales. The field structure resulting appears consistent with observations including Faraday rotation and polarisation from synchrotron and dust thermal emission. Major remaining challenges include scaling numerical models toward realistic scale separations and Prandtl and Reynolds numbers.$$\upmu $$ -
ABSTRACT Transport coefficients in turbulence are comprised of correlation functions between turbulent fluctuations and efficient methods to calculate them are desirable. For example, in mean-field dynamo theories used to model the growth of large-scale magnetic fields of stars and galaxies, the turbulent electromotive force is commonly approximated by a series of tensor products of turbulent transport coefficients with successively higher order spatial derivatives of the mean magnetic field. One ingredient of standard models is the kinematic coefficient of the zeroth-order term, namely the averaged kinetic pseudo-tensor $\boldsymbol \alpha$, that converts toroidal to poloidal fields. Here we demonstrate an efficient way to calculate this quantity for rotating stratified turbulence, whereby the pre-averaged quantity is calculated for the motion of a single plume, and the average is then taken over an ensemble of plumes of different orientations. We calculate the plume dynamics in the most convenient frame, before transforming back to the lab frame and averaging. Our concise configuration space calculation gives essentially identical results to previous lengthier approaches. The present application exemplifies what is a broadly applicable method.
-
Abstract Radio wave scattering can cause severe reductions in detection sensitivity for surveys of Galactic and extragalactic fast (∼ms duration) transients. While Galactic sources like pulsars undergo scattering in the Milky Way interstellar medium (ISM), extragalactic fast radio bursts (FRBs) can also experience scattering in their host galaxies and other galaxies intervening in their lines of sight. We assess Galactic and extragalactic scattering horizons for fast radio transients using a combination of NE2001 to model the dispersion measure and scattering time (
τ ) contributed by the Galactic disk, and independently constructed electron density models for the Galactic halo and other galaxies’ ISMs and halos that account for different galaxy morphologies, masses, densities, and strengths of turbulence. For source redshifts 0.5 ≤z s≤ 1, an all-sky, isotropic FRB population has simulated values ofτ (1 GHz) ranging from ∼1μ s to ∼2 ms (90% confidence, observer frame) that are dominated by host galaxies, althoughτ can be ≫2 ms at low Galactic latitudes. A population atz s= 5 has 0.01 ≲τ ≲ 300 ms at 1 GHz (90% confidence), dominated by intervening galaxies. About 20% of these high-redshift FRBs are predicted to haveτ > 5 ms at 1 GHz (observer frame), and ≳40% of FRBs betweenz s∼ 0.5–5 haveτ ≳ 1 ms forν ≤ 800 MHz. Our scattering predictions may be conservative if scattering from circumsource environments is significant, which is possible under specific conditions. The percentage of FRBs selected against from scattering could also be substantially larger than we predict if circumgalactic turbulence causes more small-scale (≪1 au) density fluctuations than observed from nearby halos.