skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Osteohistological analyses reveal diverse strategies of theropod dinosaur body-size evolution
The independent evolution of gigantism among dinosaurs has been a topic of long-standing interest, but it remains unclear if gigantic theropods, the largest bipeds in the fossil record, all achieved massive sizes in the same manner, or through different strategies. We perform multi-element histological analyses on a phylogenetically broad dataset sampled from eight theropod families, with a focus on gigantic tyrannosaurids and carcharodontosaurids, to reconstruct the growth strategies of these lineages and test if particular bones consistently preserve the most complete growth record. We find that in skeletally mature gigantic theropods, weight-bearing bones consistently preserve extensive growth records, whereas non-weight-bearing bones are remodelled and less useful for growth reconstruction, contrary to the pattern observed in smaller theropods and some other dinosaur clades. We find a heterochronic pattern of growth fitting an acceleration model in tyrannosaurids, with allosauroid carcharodontosaurids better fitting a model of hypermorphosis. These divergent growth patterns appear phylogenetically constrained, representing extreme versions of the growth patterns present in smaller coelurosaurs and allosauroids, respectively. This provides the first evidence of a lack of strong mechanistic or physiological constraints on size evolution in the largest bipeds in the fossil record and evidence of one of the longest-living individual dinosaurs ever documented.  more » « less
Award ID(s):
1925884
PAR ID:
10274385
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
287
Issue:
1939
ISSN:
0962-8452
Page Range / eLocation ID:
20202258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dececchi, T Alexander (Ed.)
    Fossil deposits with exceptional preservation (“lagerstätten”) provide important details not typically preserved in the fossil record, such that they hold an outsized influence on our understanding of biodiversity and evolution. In particular, the potential bias imparted by this so-called “lagerstätten effect” remains a critical, but underexplored aspect of reconstructing evolutionary relationships. Here, we quantify the amount of phylogenetic information available in the global fossil records of 1,327 species of non-avian theropod dinosaurs, Mesozoic birds, and fossil squamates (e.g., lizards, snakes, mosasaurs), and then compare the influence of lagerstätten deposits on phylogenetic information content and taxon selection in phylogenetic analyses to other fossil-bearing deposits. We find that groups that preserve a high amount of phylogenetic information in their global fossil record (e.g., non-avian theropods) are less vulnerable to a “lagerstätten effect” that leads to disproportionate representation of fossil taxa from one geologic unit in an evolutionary tree. Additionally, for each taxonomic group, we find comparable amounts of phylogenetic information in lagerstätten deposits, even though corresponding morphological character datasets vary greatly. Finally, we unexpectedly find that ancient sand dune deposits of the Late Cretaceous Gobi Desert of Mongolia and China exert an anomalously large influence on the phylogenetic information available in the squamate fossil record, suggesting a “lagerstätten effect” can be present in units not traditionally considered lagerstätten. These results offer a phylogenetics-based lens through which to examine the effects of exceptional fossil preservation on biological patterns through time and space, and invites further quantification of evolutionary information in the rock record. 
    more » « less
  2. Claessens, Leon (Ed.)
    Reconstructing the evolution, diversity, and paleobiogeography of North America’s Late Cretaceous dinosaur assemblages require spatiotemporally contiguous data; however, there remains a spatial and temporal disparity in dinosaur data on the continent. The rarity of vertebrate-bearing sedimentary deposits representing Turonian–Santonian ecosystems, and the relatively sparse record of dinosaurs from the eastern portion of the continent, present persistent challenges for studies of North American dinosaur evolution. Here we describe an assemblage of ornithomimosaurian materials from the Santonian Eutaw Formation of Mississippi. Morphological data coupled with osteohistological growth markers suggest the presence of two taxa of different body sizes, including one of the largest ornithomimosaurians known worldwide. The regression predicts a femoral circumference and a body mass of the Eutaw individuals similar to or greater than that of large-bodied ornithomimosaurs, Beishanlong grandis , and Gallimimus bullatus . The paleoosteohistology of MMNS VP-6332 demonstrates that the individual was at least ten years of age (similar to B . grandis [~375 kg, 13–14 years old at death]). Additional pedal elements share some intriguing features with ornithomimosaurs, yet suggest a larger-body size closer to Deinocheirus mirificus . The presence of a large-bodied ornithomimosaur in this region during this time is consistent with the relatively recent discoveries of early-diverging, large-bodied ornithomimosaurs from mid-Cretaceous strata of Laurasia ( Arkansaurus fridayi and B . grandis ). The smaller Eutaw taxon is represented by a tibia preserving seven growth cycles, with osteohistological indicators of decreasing growth, yet belongs to an individual approaching somatic maturity, suggesting the co-existence of medium- and large-bodied ornithomimosaur taxa during the Late Cretaceous Santonian of North America. The Eutaw ornithomimosaur materials provide key information on the diversity and distribution of North American ornithomimosaurs and Appalachian dinosaurs and fit with broader evidence of multiple cohabiting species of ornithomimosaurian dinosaurs in Late Cretaceous ecosystems of Laurasia. 
    more » « less
  3. The rise of mammals after the extinction of the dinosaurs remains one of the most enigmatic intervals in the evolution of mammals. A relatively sparse Paleocene fossil record and confusing relationships between taxa means that little is known of the evolution, ecology, or biology of these animals. Accordingly, the life history of these organisms remains unstudied, despite likely playing a key role in the rapid proliferation and body size increase of these clades in recovering ecosystems. Here, we present results of an in-depth paleohistological analysis of Pantolambda bathmodon, an early, possibly gregarious pantodont, using a new ontogenetic series of specimens. Pantodonts were bizarre, herbivorous eutherians of unknown phylogenetic affinity, and were among the first mammal lineages to reach large body sizes in the Paleocene. In examining both dental and skeletal records of growth from the same individuals, including a juvenile still bearing deciduous teeth, our study is among the most comprehensive paleohistological analyses of any fossil mammal, allowing for unprecedented insights into the life history of this species. Neonatal lines in the teeth indicate that the deciduous premolars and the first upper molar erupted prior to birth, similar to precocious, nidifugous mammals today. Daily incremental lines in the enamel and dentine suggest rapid crown formation times (~70–180 days) and a gestation period of at least 20 weeks. A stress line in the teeth and postcranial bones, recording an anomalous decrease in growth towards the end of this individual’s life, may represent weaning. The weanling perished approximately 2.5 months after birth, weighing about 17 kg. Adult individuals exhibiting severe wear on the dentition allow us to estimate maximum longevity in Pantolambda bathmodon at about 7 years. In comparison with living mammals, Pantolambda bathmodon had gestation and weaning periods below average for a placental of its adult body size (42 kg), but within the range of known variation. However, its lifespan was exceptionally short, falling outside the bounds of comparable living mammals. Together, these lines of evidence suggest a rapid pace of life in Pantolambda bathmodon, despite its relatively large body size. Ongoing sampling of more individuals and geochemical analyses should allow for estimation of time to sexual maturity and help to confirm the identity of the weaning line, completing our picture of the life history of this pioneering species. 
    more » « less
  4. null (Ed.)
    The rise of mammals after the extinction of the dinosaurs remains one of the most enigmatic intervals in the evolution of mammals. A relatively sparse Paleocene fossil record and confusing interrelationships between taxa means that little is known of the evolution, ecology, and biology of these animals. As a result, the life history of these organisms is completely unstudied, despite likely playing a key role in the ability of these clades to rapidly proliferate and increase in body size in recovering ecosystems. However, intensive collection efforts in the San Juan Basin of New Mexico in the last decade have drastically improved the record of many Paleocene mammals, and offer the first opportunity to address questions about the life history of these animals. Here, we present preliminary results of an in-depth paleohistological analysis of Pantolambda bathmodon, an early, possibly gregarious pantodont, using an ontogenetic series of individuals. Pantodonts were bizarre, herbivorous eutherians of unknown phylogenetic affinity, and were among the first mammal lineages to reach large body sizes in the Paleocene. In examining both dental and skeletal records of growth from the same individuals, including a juvenile still bearing deciduous teeth, our study is among the most comprehensive paleohistological analyses of any fossil mammal. This intensive approach allows for unprecedented insights into the life history of this species. Neonatal lines in the teeth indicate that the deciduous premolars and the first upper molar were erupted prior to birth, similar to precocious, nidifugous mammals today. Daily incremental lines in the enamel and dentine suggest rapid crown formation times (~45–70 days) and a gestation period of at least 15 weeks. A stress line in the postcranial bones, recording an anomalous decrease in growth towards the end of this individual’s life, may represent the weaning event. In the absence of geochemical evidence, it is unclear which of two stress lines in the teeth corresponds to this event, but these lines occur roughly one and two months after birth, respectively. The weanling perished approximately 2.5 months after birth, weighing about 17 kg. An adult individual exhibiting severe wear on the dentition allows us to estimate maximum longevity in Pantolambda bathmodon at about 7 years. In comparison with life history data on living mammals from the PanTheria dataset, Pantolambda bathmodon had a gestation length and weaning duration below average for a placental of its adult body size (42 kg), but within the range of known variation. However, its lifespan was exceptionally short, falling outside the bounds of comparable living mammals. Together, these lines of evidence suggest a relatively rapid pace of life in Pantolambda bathmodon, despite its relatively large body size. Ongoing sampling of more individuals and geochemical analyses should allow for estimation of time to sexual maturity and help to confirm the identity of the weaning line, completing our picture of the life history of this pioneering species. 
    more » « less
  5. Feathers are arguably the most complex integumentary structures in the entire animal kingdom. The evolutionary origins of feathers are still debated, but growing evidence from both molecular studies in extinct theropods [1–8] and living birds (e.g., [9–18]), as well as numerous fossil discoveries of structures morphologically consistent with feathers (e.g., [4,19–25]) indicate that feathers arose from filamentous structures first identifed in some theropod dinosaurs and birds more than 160 million years ago (e.g., [2,26,27]). However, some data suggest that integumentary structures similar to those from which feathers derived may have been present at the base of Dinosauria [28,29] or perhaps, the base of Archosauria ([30,31] and references therein). Because modern feathers are not biomineralized in life (contra [32,33]) their persistence in the fossil record is counterintuitive, but critical. The impressions of feathers in sediments surrounding skeletal elements led to the identification of Archaeopteryx as the first bird [34,35], but there was no organic trace with this specimen to suggest that any original material remained. However, the first specimen attributed to Archaeopteryx was a single, isolated feather [36]. This specimen presented differently from feather impressions surrounding the skeletal remains, instead visualized as a carbonized trace clearly distinct from the embedding sediments, suggesting that taphonomic processes resulting in preservation differed between the isolated feather and the skeletal specimen. The environmental factors resulting in these different modes of preservation remain relatively unexplored. 
    more » « less