skip to main content


Title: Reduction of dynatomic curves
In this paper, we make partial progress on a function field version of the dynamical uniform boundedness conjecture for certain one-dimensional families ${\mathcal{F}}$ of polynomial maps, such as the family $f_{c}(x)=x^{m}+c$ , where $m\geq 2$ . We do this by making use of the dynatomic modular curves $Y_{1}(n)$ (respectively $Y_{0}(n)$ ) which parametrize maps $f$ in ${\mathcal{F}}$ together with a point (respectively orbit) of period $n$ for $f$ . The key point in our strategy is to study the set of primes $p$ for which the reduction of $Y_{1}(n)$ modulo $p$ fails to be smooth or irreducible. Morton gave an algorithm to construct, for each $n$ , a discriminant $D_{n}$ whose list of prime factors contains all the primes of bad reduction for $Y_{1}(n)$ . In this paper, we refine and strengthen Morton’s results. Specifically, we exhibit two criteria on a prime $p$ dividing $D_{n}$ : one guarantees that $p$ is in fact a prime of bad reduction for $Y_{1}(n)$ , yet this same criterion implies that $Y_{0}(n)$ is geometrically irreducible. The other guarantees that the reduction of $Y_{1}(n)$ modulo $p$ is actually smooth. As an application of the second criterion, we extend results of Morton, Flynn, Poonen, Schaefer, and Stoll by giving new examples of good reduction of $Y_{1}(n)$ for several primes dividing $D_{n}$ when $n=7,8,11$ , and $f_{c}(x)=x^{2}+c$ . The proofs involve a blend of arithmetic and complex dynamics, reduction theory for curves, ramification theory, and the combinatorics of the Mandelbrot set.  more » « less
Award ID(s):
1901819
NSF-PAR ID:
10274388
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Ergodic Theory and Dynamical Systems
Volume:
39
Issue:
10
ISSN:
0143-3857
Page Range / eLocation ID:
2717 to 2768
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present efficient algorithms for counting points on a smooth plane quartic curve X modulo a prime p . We address both the case where X is defined over  $${\mathbb {F}}_p$$ F p and the case where X is defined over $${\mathbb {Q}}$$ Q and p is a prime of good reduction. We consider two approaches for computing $$\#X({\mathbb {F}}_p)$$ # X ( F p ) , one which runs in $$O(p\log p\log \log p)$$ O ( p log p log log p ) time using $$O(\log p)$$ O ( log p ) space and one which runs in $$O(p^{1/2}\log ^2p)$$ O ( p 1 / 2 log 2 p ) time using $$O(p^{1/2}\log p)$$ O ( p 1 / 2 log p ) space. Both approaches yield algorithms that are faster in practice than existing methods. We also present average polynomial-time algorithms for $$X/{\mathbb {Q}}$$ X / Q that compute $$\#X({\mathbb {F}}_p)$$ # X ( F p ) for good primes $$p\leqslant N$$ p ⩽ N in $$O(N\log ^3 N)$$ O ( N log 3 N ) time using O ( N ) space. These are the first practical implementations of average polynomial-time algorithms for curves that are not cyclic covers of $${\mathbb {P}}^1$$ P 1 , which in combination with previous results addresses all curves of genus $$g\leqslant 3$$ g ⩽ 3 . Our algorithms also compute Cartier–Manin/Hasse–Witt matrices that may be of independent interest. 
    more » « less
  2. Abstract Let f : ℙ 1 → ℙ 1 {f:\mathbb{P}^{1}\to\mathbb{P}^{1}} be a map of degree > 1 {>1} defined over a function field k = K ⁢ ( X ) {k=K(X)} , where K is a number field and X is a projective curve over K . For each point a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} satisfying a dynamical stability condition, we prove that the Call–Silverman canonical height for specialization f t {f_{t}} at point a t {a_{t}} , for t ∈ X ⁢ ( ℚ ¯ ) {t\in X(\overline{\mathbb{Q}})} outside a finite set, induces a Weil height on the curve X ; i.e., we prove the existence of a ℚ {\mathbb{Q}} -divisor D = D f , a {D=D_{f,a}} on X so that the function t ↦ h ^ f t ⁢ ( a t ) - h D ⁢ ( t ) {t\mapsto\hat{h}_{f_{t}}(a_{t})-h_{D}(t)} is bounded on X ⁢ ( ℚ ¯ ) {X(\overline{\mathbb{Q}})} for any choice of Weil height associated to D . We also prove a local version, that the local canonical heights t ↦ λ ^ f t , v ⁢ ( a t ) {t\mapsto\hat{\lambda}_{f_{t},v}(a_{t})} differ from a Weil function for D by a continuous function on X ⁢ ( ℂ v ) {X(\mathbb{C}_{v})} , at each place v of the number field K . These results were known for polynomial maps f and all points a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} without the stability hypothesis,[21, 14],and for maps f that are quotients of endomorphisms of elliptic curves E over k and all points a ∈ ℙ 1 ⁢ ( k ) {a\in\mathbb{P}^{1}(k)} . [32, 29].Finally, we characterize our stability condition in terms of the geometry of the induced map f ~ : X × ℙ 1 ⇢ X × ℙ 1 {\tilde{f}:X\times\mathbb{P}^{1}\dashrightarrow X\times\mathbb{P}^{1}} over K ; and we prove the existence of relative Néron models for the pair ( f , a ) {(f,a)} , when a is a Fatou point at a place γ of k , where the local canonical height λ ^ f , γ ⁢ ( a ) {\hat{\lambda}_{f,\gamma}(a)} can be computed as an intersection number. 
    more » « less
  3. We show that for primesN,p≥<#comment/>5N, p \geq 5withN≡<#comment/>−<#comment/>1modpN \equiv -1 \bmod p, the class number ofQ(N1/p)\mathbb {Q}(N^{1/p})is divisible bypp. Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that whenN≡<#comment/>−<#comment/>1modpN \equiv -1 \bmod p, there is always a cusp form of weight22and levelΓ<#comment/>0(N2)\Gamma _0(N^2)whoseℓ<#comment/>\ellth Fourier coefficient is congruent toℓ<#comment/>+1\ell + 1modulo a prime abovepp, for all primesℓ<#comment/>\ell. We use the Galois representation of such a cusp form to explicitly construct an unramified degree-ppextension ofQ(N1/p)\mathbb {Q}(N^{1/p}).

     
    more » « less
  4. Abstract The first part of the paper studies the boundary behavior of holomorphic isometric mappings F = ( F 1 , … , F m ) {F=(F_{1},\dots,F_{m})} from the complex unit ball 𝔹 n {\mathbb{B}^{n}} , n ≥ 2 {n\geq 2} , to a bounded symmetric domain Ω = Ω 1 × ⋯ × Ω m {\Omega=\Omega_{1}\times\cdots\times\Omega_{m}} up to constant conformal factors, where Ω i ′ {\Omega_{i}^{\prime}} s are irreducible factors of Ω. We prove every non-constant component F i {F_{i}} must map generic boundary points of 𝔹 n {\mathbb{B}^{n}} to the boundary of Ω i {\Omega_{i}} . In the second part of the paper, we establish a rigidity result for local holomorphic isometric maps from the unit ball to aproduct of unit balls and Lie balls. 
    more » « less
  5. Abstract We prove an inequality that unifies previous works of the authors on the properties of the Radon transform on convex bodies including an extension of the Busemann–Petty problem and a slicing inequality for arbitrary functions. Let $K$ and $L$ be star bodies in ${\mathbb R}^n,$ let $0<k<n$ be an integer, and let $f,g$ be non-negative continuous functions on $K$ and $L$, respectively, so that $\|g\|_\infty =g(0)=1.$ Then $$\begin{align*} & \frac{\int_Kf}{\left(\int_L g\right)^{\frac{n-k}n}|K|^{\frac kn}} \le \frac n{n-k} \left(d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)\right)^k \max_{H} \frac{\int_{K\cap H} f}{\int_{L\cap H} g}, \end{align*}$$where $|K|$ stands for volume of proper dimension, $C$ is an absolute constant, the maximum is taken over all $(n-k)$-dimensional subspaces of ${\mathbb R}^n,$ and $d_{\textrm{ovr}}(K,\mathcal{B}\mathcal{P}_k^n)$ is the outer volume ratio distance from $K$ to the class of generalized $k$-intersection bodies in ${\mathbb R}^n.$ Another consequence of this result is a mean value inequality for the Radon transform. We also obtain a generalization of the isomorphic version of the Shephard problem. 
    more » « less