skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A modular construction of unramified 𝑝-extensions of ℚ(ℕ^{1/𝕡})
We show that for primes N , p ≥<#comment/> 5 N, p \geq 5 with N ≡<#comment/> −<#comment/> 1 mod p N \equiv -1 \bmod p , the class number of Q ( N 1 / p ) \mathbb {Q}(N^{1/p}) is divisible by p p . Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when N ≡<#comment/> −<#comment/> 1 mod p N \equiv -1 \bmod p , there is always a cusp form of weight 2 2 and level Γ<#comment/> 0 ( N 2 ) \Gamma _0(N^2) whose ℓ<#comment/> \ell th Fourier coefficient is congruent to ℓ<#comment/> + 1 \ell + 1 modulo a prime above p p , for all primes ℓ<#comment/> \ell . We use the Galois representation of such a cusp form to explicitly construct an unramified degree- p p extension of Q ( N 1 / p ) \mathbb {Q}(N^{1/p}) more » « less
Award ID(s):
1901867
PAR ID:
10473940
Author(s) / Creator(s):
;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Proceedings of the American Mathematical Society, Series B
Volume:
9
Issue:
39
ISSN:
2330-1511
Page Range / eLocation ID:
415 to 431
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let f f be analytic on [ 0 , 1 ] [0,1] with | f ( k ) ( 1 / 2 ) | ⩽<#comment/> A α<#comment/> k k ! |f^{(k)}(1/2)|\leqslant A\alpha ^kk! for some constants A A and α<#comment/> > 2 \alpha >2 and all k ⩾<#comment/> 1 k\geqslant 1 . We show that the median estimate of μ<#comment/> = ∫<#comment/> 0 1 f ( x ) d x \mu =\int _0^1f(x)\,\mathrm {d} x under random linear scrambling with n = 2 m n=2^m points converges at the rate O ( n −<#comment/> c log ⁡<#comment/> ( n ) ) O(n^{-c\log (n)}) for any c > 3 log ⁡<#comment/> ( 2 ) / π<#comment/> 2 ≈<#comment/> 0.21 c> 3\log (2)/\pi ^2\approx 0.21 . We also get a super-polynomial convergence rate for the sample median of 2 k −<#comment/> 1 2k-1 random linearly scrambled estimates, when k / m k/m is bounded away from zero. When f f has a p p ’th derivative that satisfies a λ<#comment/> \lambda -Hölder condition then the median of means has error O ( n −<#comment/> ( p + λ<#comment/> ) + ϵ<#comment/> ) O( n^{-(p+\lambda )+\epsilon }) for any ϵ<#comment/> > 0 \epsilon >0 , if k →<#comment/> ∞<#comment/> k\to \infty as m →<#comment/> ∞<#comment/> m\to \infty . The proof techniques use methods from analytic combinatorics that have not previously been applied to quasi-Monte Carlo methods, most notably an asymptotic expression from Hardy and Ramanujan on the number of partitions of a natural number. 
    more » « less
  2. We consider minimizing harmonic maps u u from Ω<#comment/> ⊂<#comment/> R n \Omega \subset \mathbb {R}^n into a closed Riemannian manifold N \mathcal {N} and prove: 1. an extension to n ≥<#comment/> 4 n \geq 4 of Almgren and Lieb’s linear law. That is, if the fundamental group of the target manifold N \mathcal {N} is finite, we have\[ H n −<#comment/> 3 ( sing ⁡<#comment/> u ) ≤<#comment/> C ∫<#comment/> ∂<#comment/> Ω<#comment/> | ∇<#comment/> T u | n −<#comment/> 1 d H n −<#comment/> 1 ; \mathcal {H}^{n-3}(\operatorname {sing} u) \le C \int _{\partial \Omega } |\nabla _T u|^{n-1} \,\mathrm {d}\mathcal {H}^{n-1}; \]2. an extension of Hardt and Lin’s stability theorem. Namely, assuming that the target manifold is N = S 2 \mathcal {N}=\mathbb {S}^2 we obtain that the singular set of u u is stable under small W 1 , n −<#comment/> 1 W^{1,n-1} -perturbations of the boundary data. In dimension n = 3 n=3 both results are shown to hold with weaker hypotheses, i.e., only assuming that the trace of our map lies in the fractional space W s , p W^{s,p} with s ∈<#comment/> ( 1 2 , 1 ] s \in (\frac {1}{2},1] and p ∈<#comment/> [ 2 , ∞<#comment/> ) p \in [2,\infty ) satisfying s p ≥<#comment/> 2 sp \geq 2 . We also discuss sharpness. 
    more » « less
  3. We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable ∞<#comment/> \infty -category of non- A 1 \mathbb {A}^1 -invariant motivic spectra, which turns out to be equivalent to the ∞<#comment/> \infty -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this ∞<#comment/> \infty -category satisfies P 1 \mathbb {P}^1 -homotopy invariance and weighted A 1 \mathbb {A}^1 -homotopy invariance, which we use in place of A 1 \mathbb {A}^1 -homotopy invariance to obtain analogues of several key results from A 1 \mathbb {A}^1 -homotopy theory. These allow us in particular to define a universal oriented motivic E ∞<#comment/> \mathbb {E}_\infty -ring spectrum M G L \mathrm {MGL} . We then prove that the algebraic K-theory of a qcqs derived scheme X X can be recovered from its M G L \mathrm {MGL} -cohomology via a Conner–Floyd isomorphism\[ M G L ∗<#comment/> ∗<#comment/> ( X ) ⊗<#comment/> L Z [ β<#comment/> ±<#comment/> 1 ] ≃<#comment/> K ∗<#comment/> ∗<#comment/> ( X ) , \mathrm {MGL}^{**}(X)\otimes _{\mathrm {L}{}}\mathbb {Z}[\beta ^{\pm 1}]\simeq \mathrm {K}{}^{**}(X), \]where L \mathrm {L}{} is the Lazard ring and K p , q ( X ) = K 2 q −<#comment/> p ( X ) \mathrm {K}{}^{p,q}(X)=\mathrm {K}{}_{2q-p}(X) . Finally, we prove a Snaith theorem for the periodized version of M G L \mathrm {MGL}
    more » « less
  4. In this paper we consider which families of finite simple groups G G have the property that for each ϵ<#comment/> > 0 \epsilon > 0 there exists N > 0 N > 0 such that, if | G | ≥<#comment/> N |G| \ge N and S , T S, T are normal subsets of G G with at least ϵ<#comment/> | G | \epsilon |G| elements each, then every non-trivial element of G G is the product of an element of S S and an element of T T . We show that this holds in a strong and effective sense for finite simple groups of Lie type of bounded rank, while it does not hold for alternating groups or groups of the form P S L n ( q ) \mathrm {PSL}_n(q) where q q is fixed and n →<#comment/> ∞<#comment/> n\to \infty . However, in the case S = T S=T and G G alternating this holds with an explicit bound on N N in terms of ϵ<#comment/> \epsilon . Related problems and applications are also discussed. In particular we show that, if w 1 , w 2 w_1, w_2 are non-trivial words, G G is a finite simple group of Lie type of bounded rank, and for g ∈<#comment/> G g \in G , P w 1 ( G ) , w 2 ( G ) ( g ) P_{w_1(G),w_2(G)}(g) denotes the probability that g 1 g 2 = g g_1g_2 = g where g i ∈<#comment/> w i ( G ) g_i \in w_i(G) are chosen uniformly and independently, then, as | G | →<#comment/> ∞<#comment/> |G| \to \infty , the distribution P w 1 ( G ) , w 2 ( G ) P_{w_1(G),w_2(G)} tends to the uniform distribution on G G with respect to the L ∞<#comment/> L^{\infty } norm. 
    more » « less
  5. We show that if L 1 \mathcal {L}_1 and L 2 \mathcal {L}_2 are linear transformations from Z d \mathbb {Z}^d to Z d \mathbb {Z}^d satisfying certain mild conditions, then, for any finite subset A A of Z d \mathbb {Z}^d , | L 1 A + L 2 A | ≥<#comment/> ( | det ( L 1 ) | 1 / d + | det ( L 2 ) | 1 / d ) d | A | −<#comment/> o ( | A | ) . \begin{equation*} |\mathcal {L}_1 A+\mathcal {L}_2 A|\geq \left ( |\det (\mathcal {L}_1)|^{1/d}+|\det (\mathcal {L}_2)|^{1/d} \right )^d|A|- o(|A|). \end{equation*} This result corrects and confirms the two-summand case of a conjecture of Bukh and is best possible up to the lower-order term for certain choices of L 1 \mathcal {L}_1 and L 2 \mathcal {L}_2 . As an application, we prove a lower bound for | A + λ<#comment/> ⋅<#comment/> A | |A + \lambda \cdot A| when A A is a finite set of real numbers and λ<#comment/> \lambda is an algebraic number. In particular, when λ<#comment/> \lambda is of the form ( p / q ) 1 / d (p/q)^{1/d} for some p , q , d ∈<#comment/> N p, q, d \in \mathbb {N} , each taken as small as possible for such a representation, we show that | A + λ<#comment/> ⋅<#comment/> A | ≥<#comment/> ( p 1 / d + q 1 / d ) d | A | −<#comment/> o ( | A | ) . \begin{equation*} |A + \lambda \cdot A| \geq (p^{1/d} + q^{1/d})^d |A| - o(|A|). \end{equation*} This is again best possible up to the lower-order term and extends a recent result of Krachun and Petrov which treated the case λ<#comment/> = 2 \lambda = \sqrt {2}
    more » « less