skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Counting points on smooth plane quartics
Abstract We present efficient algorithms for counting points on a smooth plane quartic curve X modulo a prime p . We address both the case where X is defined over  $${\mathbb {F}}_p$$ F p and the case where X is defined over $${\mathbb {Q}}$$ Q and p is a prime of good reduction. We consider two approaches for computing $$\#X({\mathbb {F}}_p)$$ # X ( F p ) , one which runs in $$O(p\log p\log \log p)$$ O ( p log p log log p ) time using $$O(\log p)$$ O ( log p ) space and one which runs in $$O(p^{1/2}\log ^2p)$$ O ( p 1 / 2 log 2 p ) time using $$O(p^{1/2}\log p)$$ O ( p 1 / 2 log p ) space. Both approaches yield algorithms that are faster in practice than existing methods. We also present average polynomial-time algorithms for $$X/{\mathbb {Q}}$$ X / Q that compute $$\#X({\mathbb {F}}_p)$$ # X ( F p ) for good primes $$p\leqslant N$$ p ⩽ N in $$O(N\log ^3 N)$$ O ( N log 3 N ) time using O ( N ) space. These are the first practical implementations of average polynomial-time algorithms for curves that are not cyclic covers of $${\mathbb {P}}^1$$ P 1 , which in combination with previous results addresses all curves of genus $$g\leqslant 3$$ g ⩽ 3 . Our algorithms also compute Cartier–Manin/Hasse–Witt matrices that may be of independent interest.  more » « less
Award ID(s):
1946311
PAR ID:
10420423
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Research in Number Theory
Volume:
9
Issue:
1
ISSN:
2522-0160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For every integer k there exists a bound $$B=B(k)$$ B = B ( k ) such that if the characteristic polynomial of $$g\in \textrm{SL}_n(q)$$ g ∈ SL n ( q ) is the product of $$\le k$$ ≤ k pairwise distinct monic irreducible polynomials over $$\mathbb {F}_q$$ F q , then every element x of $$\textrm{SL}_n(q)$$ SL n ( q ) of support at least B is the product of two conjugates of g . We prove this and analogous results for the other classical groups over finite fields; in the orthogonal and symplectic cases, the result is slightly weaker. With finitely many exceptions ( p ,  q ), in the special case that $$n=p$$ n = p is prime, if g has order $$\frac{q^p-1}{q-1}$$ q p - 1 q - 1 , then every non-scalar element $$x \in \textrm{SL}_p(q)$$ x ∈ SL p ( q ) is the product of two conjugates of g . The proofs use the Frobenius formula together with upper bounds for values of unipotent and quadratic unipotent characters in finite classical groups. 
    more » « less
  2. Abstract We present an efficient algorithm to compute the Euler factor of a genus 2 curve$$C/\mathbb {Q}$$ C / Q at an odd primepthat is of bad reduction forCbut of good reduction for the Jacobian ofC(a prime of “almost good” reduction). Our approach is based on the theory of cluster pictures introduced by Dokchitser, Dokchitser, Maistret, and Morgan, which allows us to reduce the problem to a short, explicit computation over$$\mathbb {Z}$$ Z and$$\mathbb {F}_p$$ F p , followed by a point-counting computation on two elliptic curves over$$\mathbb {F}_p$$ F p , or a single elliptic curve over$$\mathbb {F}_{p^2}$$ F p 2 . A key feature of our approach is that we avoid the need to compute a regular model forC. This allows us to efficiently compute many examples that are infeasible to handle using the algorithms currently available in computer algebra systems such as Magma and Pari/GP. 
    more » « less
  3. Let $$p$$ be an odd  prime, $q=p^e$, $$e \geq 1$$, and $$\mathbb{F} = \mathbb{F}_q$$ denote the finite field of $$q$$ elements.  Let $$f: \mathbb{F}^2\to \mathbb{F}$$ and  $$g: \mathbb{F}^3\to \mathbb{F}$$  be functions, and  let $$P$$ and $$L$$ be two copies of the 3-dimensional vector space $$\mathbb{F}^3$$. Consider a bipartite graph $$\Gamma_\mathbb{F} (f, g)$$ with vertex partitions $$P$$ and $$L$$ and with edges defined as follows: for every $$(p)=(p_1,p_2,p_3)\in P$$ and every $$[l]= [l_1,l_2,l_3]\in L$$, $$\{(p), [l]\} = (p)[l]$$ is an edge in $$\Gamma_\mathbb{F} (f, g)$$ if $$p_2+l_2 =f(p_1,l_1) \;\;\;\text{and}\;\;\; p_3 + l_3 = g(p_1,p_2,l_1).$$The following question  appeared in Nassau: Given $$\Gamma_\mathbb{F} (f, g)$$,  is it always possible to find a function $$h:\mathbb{F}^2\to \mathbb{F}$$ such that the graph $$\Gamma_\mathbb{F} (f, h)$$  with the same vertex set as $$\Gamma_\mathbb{F} (f, g)$$ and with edges $(p)[l]$  defined in a similar way  by the system $$p_2+l_2 =f(p_1,l_1) \;\;\;\text{and}\;\;\; p_3 + l_3 = h(p_1,l_1),$$ is isomorphic to $$\Gamma_\mathbb{F} (f, g)$$ for infinitely many $$q$$?  In this paper we show that the  answer to the question is negative and the graphs $$\Gamma_{\mathbb{F}_p}(p_1\ell_1, p_1\ell_1p_2(p_1 + p_2 + p_1p_2))$$ provide such an example for $$p \equiv 1 \pmod{3}$$. Our argument is based on proving that the automorphism group of these graphs has order $$p$$, which is the smallest possible order of the automorphism group of graphs of the form $$\Gamma_{\mathbb{F}}(f, g)$$. 
    more » « less
  4. We study the $$\ell_p$$ regression problem, which requires finding $$\mathbf{x}\in\mathbb R^{d}$$ that minimizes $$\|\mathbf{A}\mathbf{x}-\mathbf{b}\|_p$$ for a matrix $$\mathbf{A}\in\mathbb R^{n \times d}$$ and response vector $$\mathbf{b}\in\mathbb R^{n}$$. There has been recent interest in developing subsampling methods for this problem that can outperform standard techniques when $$n$$ is very large. However, all known subsampling approaches have run time that depends exponentially on $$p$$, typically, $$d^{\mathcal{O}(p)}$$, which can be prohibitively expensive. We improve on this work by showing that for a large class of common \emph{structured matrices}, such as combinations of low-rank matrices, sparse matrices, and Vandermonde matrices, there are subsampling based methods for $$\ell_p$$ regression that depend polynomially on $$p$$. For example, we give an algorithm for $$\ell_p$$ regression on Vandermonde matrices that runs in time $$\mathcal{O}(n\log^3 n+(dp^2)^{0.5+\omega}\cdot\text{polylog}\,n)$$, where $$\omega$$ is the exponent of matrix multiplication. The polynomial dependence on $$p$$ crucially allows our algorithms to extend naturally to efficient algorithms for $$\ell_\infty$$ regression, via approximation of $$\ell_\infty$$ by $$\ell_{\mathcal{O}(\log n)}$$. Of practical interest, we also develop a new subsampling algorithm for $$\ell_p$$ regression for arbitrary matrices, which is simpler than previous approaches for $$p \ge 4$$. 
    more » « less
  5. We consider the problem of preprocessing a weighted directed planar graph in order to quickly answer exact distance queries. The main tension in this problem is between space S and query time Q , and since the mid-1990s all results had polynomial time-space tradeoffs, e.g., Q = ~ Θ( n/√ S ) or Q = ~Θ( n 5/2 /S 3/2 ). In this article we show that there is no polynomial tradeoff between time and space and that it is possible to simultaneously achieve almost optimal space n 1+ o (1) and almost optimal query time n o (1) . More precisely, we achieve the following space-time tradeoffs: n 1+ o (1) space and log 2+ o (1) n query time, n log 2+ o (1) n space and n o (1) query time, n 4/3+ o (1) space and log 1+ o (1) n query time. We reduce a distance query to a variety of point location problems in additively weighted Voronoi diagrams and develop new algorithms for the point location problem itself using several partially persistent dynamic tree data structures. 
    more » « less