Nanostructured steels are expected to have enhanced irradiation tolerance and improved strength. However, they suffer from poor microstructural stability at elevated temperatures. In this study, Fe–21Cr–5Al–0.026C (wt%) Kanthal D (KD) alloy belonging to a class of (FeCrAl) alloys considered for accident‐tolerant fuel cladding in light‐water reactors is nanostructured using two severe plastic deformation techniques of equal‐channel angular pressing (ECAP) and high‐pressure torsion (HPT), and their thermal stability between 500–700 °C is studied and compared. ECAP KD is found to be thermally stable up to 500 °C, whereas HPT KD is unstable at 500 °C. Microstructural characterization reveals that ECAP KD undergoes recovery at 550 °C and recrystallization above 600 °C, while HPT KD shows continuous grain growth after annealing above 500 °C. Enhanced thermal stability of ECAP KD is from significant fraction (>50%) of low‐angle grain boundaries (GBs) (misorientation angle 2–15°) stabilizing the microstructure due to their low mobility. Small grain sizes, a high fraction (>80%) of high‐angle GBs (misorientation angle >15°) and accordingly a large amount of stored GB energy, serve as the driving force for HPT KD to undergo grain growth instead of recrystallization driven by excess stored strain energy.
more »
« less
Nanostructured Oxide‐Dispersion‐Strengthened CoCrFeMnNi High‐Entropy Alloys with High Thermal Stability
A nanostructured oxide‐dispersion‐strengthened (ODS) CoCrFeMnNi high‐entropy alloy (HEA) is synthesized by a powder metallurgy process. The thermal stability, including the grain size and crystal structure of the HEA matrix and oxide dispersions, is carefully investigated by X‐ray diffraction (XRD) and electron microscopy characterizations after annealing at 900 °C. The limited grain growth may be attributed to Zener pinning of yttria dispersions that impede the grain boundary mobility and diffusivity. The high hardness is caused by both the fine grain size and yttria dispersions, which are also retained after annealing at 900 °C. Herein, it is implied that the combination of ODS and HEA concepts may provide a new design strategy for the development of thermally stable nanostructured alloys for extreme environments.
more »
« less
- Award ID(s):
- 1762190
- PAR ID:
- 10274454
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Engineering Materials
- Volume:
- 23
- Issue:
- 9
- ISSN:
- 1438-1656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The static recrystallization and grain growth of a hybrid AZ31/Mg-0.6Gd (wt%) material fabricated by high pressure torsion (HPT) through 20 turns were explored after isochronal annealing at 150, 250, 350 and 450 ◦C for 1 h using electron backscatter diffraction, transmission electron microscopy and Vickers microhardness measurements. The results reveal heterogeneity in the grain size distributions of the AZ31 and Mg-0.6Gd regions after annealing at the lower temperatures of 150 and 250 ◦C leading to a clear AZ31/Mg-0.6Gd interfacial border. At the higher temperatures of 350 and 450 ◦C the AZ31/Mg-0.6Gd interfaces were not well-defined owing to the occurrence of grain growth. It is shown that grain growth is restricted in the AZ31 and Mg-0.6Gd regions due to the presence of stable nano-size Al8Mn5 particles and the precipitation of Mg17Al12 and Mg12Zn at 250 ◦C and of Mg5Gd and Mg12Gd phases at 350 and 450 ◦C. The distribution of the basal texture in both regions was strongly controlled by dynamic recrystallization, precipitation and grain growth. The values of the microhardness over the radial cross-sections of the hybrid discs decrease and become more uniform, in the range of ~35–66 Hv, with increasing annealing temperature.more » « less
-
The authors report on the evaluation of the oxide scale and the interface microstructure of a Cr–Nb–Ta–V–W refractory high entropy alloy (HEA) at elevated temperatures. The Cr–Nb–Ta–V–W HEA is oxidized at 700 and 800 °C in lab air and the substrate/oxide interface is investigated. Combined in situ X‐ray diffraction (XRD) coupled with ex situ scanning electron microscopy (SEM) and energy dispersive X‐ray spectrometry (EDS) analyses characterize the oxide scale and confirm the phases present in the substrate which have been previously identified in this alloy. The microstructure near the interface is studied for an indication of selective oxidation of this alloy. Cracking and porosity are found along the interface layer which grows directionally outward. Two main oxides are identified: a W‐based oxide with a needle‐like structure and a Cr oxide containing Ta that has a granular structure, primarily found in clusters. The oxide layers are porous, and no dense protective oxide is identified. It is found that when the temperature is increased to 800 °C, the oxide layer exhibits an increase in thickness. In situ XRD indicates that V is the first element to oxidize.more » « less
-
In a recent work, we have reported outstanding strength and work hardening exhibited by a metastable high entropy alloy (HEA), Fe42Mn28Co10Cr15Si5 (in at. %), undergoing the strain-induced martensitic transformation from metastable gamma austenite (γ) to stable epsilon martensite (ε). However, the alloy exhibited poor ductility, which was attributed to the presence of the brittle sigma (σ) phase in its microstructure. The present work reports the evolution of microstructure, strength, and ductility of a similar HEA, Fe38.5Mn20Co20Cr15Si5Cu1.5 (in at. %), designed to suppress the formation of σ phase. A cast and then rolled plate of the alloy was processed into four conditions by annealing for 10 and 30 min at 1100 °C and by friction stir processing (FSP) at tool rotation rates of 150 and 400 revolutions per minute (RPM) to facilitate detailed examinations of variable initial grain structures. Neutron diffraction and electron microscopy were employed to characterize the microstructure and texture evolution. The initial materials had variable grain size but nearly 100% γ structure. Diffusionless strain induced γ→ε phase transformation took place under compression with higher rate initially and slower rate at the later stages of deformation, independent on the initial grain size. The transformation facilitated part of plastic strain accommodation and rapid strain hardening owing to a transformation-induced dynamic Hall-Petch-type barrier effect, increase in dislocation density, and texture. The peak strength of nearly 2 GPa was achieved under compression using the structure created by double pass FSP (150 RPM followed by 150 RPM). Remarkably, the tensile elongation exhibited by the alloy was nearly 20% with fracture surfaces featuring a combination of ductile dimples and cleavage.more » « less
-
Abstract The vast high entropy alloy (HEA) composition space is promising for discovery of new material phases with unique properties. This study explores the potential to achieve rare‐earth‐free high magnetic anisotropy materials in single‐phase HEA thin films. Thin films of FeCoNiMnCu sputtered on thermally oxidized Si/SiO2substrates at room temperature are magnetically soft, with a coercivity on the order of 10 Oe. After post‐deposition rapid thermal annealing (RTA), the films exhibit a single face‐centered‐cubic phase, with an almost 40‐fold increase in coercivity. Inclusion of 50 at.% Pt in the film leads to ordering of a singleL10high entropy intermetallic phase after RTA, along with high magnetic anisotropy and 3 orders of magnitude coercivity increase. These results demonstrate a promising HEA approach to achieve high magnetic anisotropy materials using RTA.more » « less
An official website of the United States government
