skip to main content

Title: Aqueous-phase reactive species formed by fine particulate matter from remote forests and polluted urban air
Abstract. In the aqueous phase, fine particulate matter can form reactive species (RS)that influence the aging, properties, and health effects of atmosphericaerosols. In this study, we explore the RS yields of aerosol samples froma remote forest (Hyytiälä, Finland) and polluted urban locations(Mainz, Germany; Beijing, China), and we relate the RS yields to differentchemical constituents and reaction mechanisms. Ultra-high-resolution massspectrometry was used to characterize organic aerosol composition, electronparamagnetic resonance (EPR) spectroscopy with a spin-trapping technique wasapplied to determine the concentrations of ⚫OH,O2⚫-, and carbon- or oxygen-centered organic radicals, anda fluorometric assay was used to quantify H2O2. The aqueousH2O2-forming potential per mass unit of ambient PM2.5(particle diameter < 2.5 µm) was roughly the same for allinvestigated samples, whereas the mass-specific yields of radicals werelower for sampling sites with higher concentrations of PM2.5. Theabundances of water-soluble transition metals and aromatics in ambientPM2.5 were positively correlated with the relative fraction of⚫OH and negatively correlated with the relative fraction ofcarbon-centered radicals. In contrast, highly oxygenated organic molecules(HOM) were positively correlated with the relative fraction ofcarbon-centered radicals and negatively correlated with the relativefraction of ⚫OH. Moreover, we found that the relative fractionsof different types of radicals formed by ambient PM2.5 were comparableto surrogate mixtures comprising transition metal ions, more » organichydroperoxide, H2O2, and humic or fulvic acids. The interplay oftransition metal ions (e.g., iron and copper ions), highly oxidized organicmolecules (e.g., hydroperoxides), and complexing or scavenging agents (e.g.,humic or fulvic acids) leads to nonlinear concentration dependencies inaqueous-phase RS production. A strong dependence on chemical compositionwas also observed for the aqueous-phase radical yields oflaboratory-generated secondary organic aerosols (SOA) from precursormixtures of naphthalene and β-pinene. Our findings show how thecomposition of PM2.5 can influence the amount and nature ofaqueous-phase RS, which may explain differences in the chemical reactivityand health effects of particulate matter in clean and polluted air. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Award ID(s):
Publication Date:
Journal Name:
Atmospheric Chemistry and Physics
Page Range or eLocation-ID:
10439 to 10455
Sponsoring Org:
National Science Foundation
More Like this
  1. Organosulfates (OSs) formed from heterogeneous reactions of organic-derived oxidation products with sulfate ions are an important component of secondary organic aerosol (SOA) mass, primarily in submicron particles with long atmospheric lifetimes. Fundamental understanding of OS evolution in particles, including the formation of new compounds via oxidation, is limited, particularly across relative humidities above and below the deliquescence of typical sulfate aerosol particles. By generating aqueous particulate OSs and other SOA products from the acid-driven reactive uptake of isoprene epoxydiols (IEPOX) onto inorganic sulfate aerosols in a 2-m3 indoor chamber at various relative humidities (30 – 80%) and injecting them into an oxidation flow reactor under the presence of hydroxyl radicals (·OH), we investigate the modification of particle size distributions, extent of inorganic sulfate conversion to organosulfates, and single-particle physicochemical properties. Chemical composition of particle-phase species, as well as aerosol morphological changes, are analyzed as a function of relative humidity and oxidant exposure times to better understand OS formation and destruction mechanisms in the ambient atmosphere.
  2. The daytime oxidation of biogenic hydrocarbons is attributed to both OH radicals and O3, while nighttime chemistry is dominated by the reaction with O3 and NO3 radicals. Here, the diurnal pattern of Secondary Organic Aerosol (SOA) originating from biogenic hydrocarbons was intensively evaluated under varying environmental conditions (temperature, humidity, sunlight intensity, NOx levels, and seed conditions) by using the UNIfied Partitioning Aerosol phase Reaction (UNIPAR) model, which comprises multiphase gas-particle partitioning and in-particle chemistry. The oxidized products of three different hydrocarbons (isoprene, α-pinene, and β-caryophyllene) were predicted by using near explicit gas mechanisms for four different oxidation paths (OH, O3, NO3, and O(3P)) during day and night. The gas mechanisms implemented the Master Chemical Mechanism (MCM v3.3.1), the reactions that formed low volatility products via peroxy radical (RO2) autoxidation, and self- and cross-reactions of nitrate-origin RO2. In the model, oxygenated products were then classified into volatility-reactivity base lumping species, which were dynamically constructed under varying NOx levels and aging scales. To increase feasibility, the UNIPAR model that equipped mathematical equations for stoichiometric coefficients and physicochemical parameters of lumping species was integrated with the SAPRC gas mechanism. The predictability of the UNIPAR model was demonstrated by simulating chamber-generated SOA data undermore »varying environments day and night. Overall, the SOA simulation decoupled to each oxidation path indicated that the nighttime isoprene SOA formation was dominated by the NO3-driven oxidation, regardless of NOx levels. However, the oxidation path to produce the nighttime α-pinene SOA gradually transited from the NO3-initiated reaction to ozonolysis as NOx levels decreased. For daytime SOA formation, both isoprene and α-pinene were dominated by the OH-radical initiated oxidation. The contribution of the O(3P) path to all biogenic SOA formation was negligible in daytime. Sunlight during daytime promotes the decomposition of oxidized products via photolysis and thus, reduces SOA yields. Nighttime α-pinene SOA yields were significantly higher than daytime SOA yields, although the nighttime α-pinene SOA yields gradually decreased with decreasing NOx levels. For isoprene, nighttime chemistry yielded higher SOA mass than daytime at the higher NOx level (isoprene/NOx > 5 ppbC/ppb). The daytime isoprene oxidation at the low NOx level formed epoxy-diols that significantly contributed SOA formation via heterogeneous chemistry. For isoprene and α-pinene, daytime SOA yields gradually increased with decreasing NOx levels. The daytime SOA produced more highly oxidized multifunctional products and thus, it was generally more sensitive to the aqueous reactions than the nighttime SOA. β-Caryophyllene, which rapidly oxidized and produced SOA with high yields, showed a relatively small variation in SOA yields from changes in environmental conditions (i.e., NOx levels, seed conditions, and diurnal pattern), and its SOA formation was mainly attributed to ozonolysis day and night. To mimic the nighttime α-pinene SOA formation under the polluted urban atmosphere, α-pinene SOA formation was simulated in the presence of gasoline fuel. The simulation suggested the growth of α-pinene SOA in the presence of gasoline fuel gas by the enhancement of the ozonolysis path under the excess amount of ozone, which is typical in urban air. We concluded that the oxidation of the biogenic hydrocarbon with O3 or NO3 radicals is a source to produce a sizable amount of nocturnal SOA, despite of the low emission at night.« less
  3. Abstract. While photooxidants are important in atmospheric condensed phases, there arevery few measurements in particulate matter (PM). Here we measure lightabsorption and the concentrations of three photooxidants – hydroxyl radical(⚫OH), singlet molecular oxygen (1O2*),and oxidizing triplet excited states of organic matter (3C*) –in illuminated aqueous extracts of wintertime particles from Davis,California. 1O2* and 3C*, which are formedfrom photoexcitation of brown carbon (BrC), have not been previously measuredin PM. In the extracts, mass absorption coefficients for dissolved organiccompounds (MACDOC) at 300 nm range between 13 000 and30 000 cm2 (g C)−1 are approximately twice ashigh as previous values in Davis fogs. The average (±1σ)⚫OH steady-state concentration in particle extracts is4.4(±2.3)×10-16 M, which is very similar to previous valuesin fog, cloud, and rain: although our particle extracts are moreconcentrated, the resulting enhancement in the rate of ⚫OHphotoproduction is essentially canceled out by a corresponding enhancement inconcentrations of natural sinks for ⚫OH. In contrast,concentrations of the two oxidants formed primarily from brown carbon (i.e.,1O2* and 3C*) are both enhanced in theparticle extracts compared to Davis fogs, a result of higher concentrationsof dissolved organic carbon and faster rates of light absorption in theextracts. The average 1O2* concentration in the PM extractsis 1.6(±0.5)×10-12 M, 7 times higher than past fogmeasurements, while the average concentrationmore »of oxidizing triplets is 1.0(±0.4)×10-13 M, nearly double the average Davis fog value.Additionally, the rates of 1O2* and 3C*photoproduction are both well correlated with the rate of sunlightabsorption. Since we cannot experimentally measure photooxidants under ambient particlewater conditions, we measured the effect of PM dilution on oxidantconcentrations and then extrapolated to ambient particle conditions. As theparticle mass concentration in the extracts increases, measuredconcentrations of ⚫OH remain relatively unchanged,1O2* increases linearly, and 3C* concentrations increase lessthan linearly, likely due to quenching by dissolved organics. Based on ourmeasurements, and accounting for additional sources and sinks that should beimportant under PM conditions, we estimate that [⚫OH] inparticles is somewhat lower than in dilute cloud/fog drops, while [3C*]is 30 to 2000 times higher in PM than in drops, and [1O2*] isenhanced by a factor of roughly 2400 in PM compared to drops. Because ofthese enhancements in 1O2* and 3C* concentrations,the lifetimes of some highly soluble organics appear to be much shorter inparticle liquid water than under foggy/cloudy conditions. Based onextrapolating our measured rates of formation in PM extracts, BrC-derivedsinglet molecular oxygen and triplet excited states are overall the dominantsinks for organic compounds in particle liquid water, with an aggregate rateof reaction for each oxidant that is approximately 200–300 times higherthan the aggregate rate of reactions for organics with ⚫OH. Forindividual, highly soluble reactive organic compounds it appears that1O2* is often the major sink in particle water, which is a newfinding. Triplet excited states are likely also important in the fate ofindividual particulate organics, but assessing this requires additionalmeasurements of triplet interactions with dissolved organic carbon innatural samples.« less
  4. Methyltetrol sulfates are unique tracers for secondary organic aerosols (SOA) formed from acid-driven multiphase chemistry of isoprene-derived epoxydiols. 2-Methyltetrol sulfate diastereomers (2-MTSs) are the dominant isomers and single most-abundant SOA tracers in atmospheric fine particulate matter (PM2.5), but their atmospheric sinks remain unknown. We investigated the oxidative aging of authentic 2-MTS aerosols by gas-phase hydroxyl radicals (•OH) at a relative humidity of 61 ± 1%. The effective rate constant for this heterogeneous reaction was determined as 4.9 ± 0.6 × 10–13 cm3 molecules–1 s–1, corresponding to an atmospheric lifetime of 16 ± 2 days (assuming an •OH concentration of 1.5 × 106 molecules cm–3). Chemical changes to 2-MTSs were monitored by hydrophilic interaction liquid chromatography interfaced to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS). Plausible reaction mechanisms are proposed for previously unknown OSs detected in atmospheric PM2.5 at mass-to-charge ratios (m/z) of 139 (C2H3O5S–), 155 (C2H3O6S–), 169 (C3H5O6S–), 171 (C3H7O6S–), 185 (C3H5O7S–), 199 (C4H7O7S–), 211 (C5H7O7S–), 213 (C5H9O7S–), 227 (C5H7O8S–), 229 (C5H9O8S–), and 231 (C5H11O8S–). Heterogeneous •OH oxidation of 2-MTSs redistributes the particulate sulfur speciation into more oxygenated/functionalized OSs, likely modifying the aerosol physicochemical properties of SOA containing 2-MTSs.
  5. Abstract. Acid-catalyzed multiphase chemistry of epoxydiols formed from isopreneoxidation yields the most abundant organosulfates (i.e., methyltetrolsulfates) detected in atmospheric fine aerosols in the boundary layer. Thispotentially determines the physicochemical properties of fine aerosols inisoprene-rich regions. However, chemical stability of these organosulfatesremains unclear. As a result, we investigate the heterogeneous oxidation ofaerosols consisting of potassium 3-methyltetrol sulfate ester(C5H11SO7K) by gas-phase hydroxyl (OH) radicals at a relativehumidity (RH) of 70.8 %. Real-time molecular composition of the aerosolsis obtained by using a Direct Analysis in Real Time (DART) ionization sourcecoupled to a high-resolution mass spectrometer. Aerosol mass spectra revealthat 3-methyltetrol sulfate ester can be detected as its anionic form(C5H11SO7-) via direct ionization in the negativeionization mode. Kinetic measurements reveal that the effective heterogeneousOH rate constant is measured to be 4.74±0.2×10-13 cm3 molecule−1 s−1 with a chemical lifetime against OHoxidation of 16.2±0.3 days, assuming an OH radical concentration of1.5×106 molecules cm−3. Comparison of this lifetime withthose against other aerosol removal processes, such as dry and wetdeposition, suggests that 3-methyltetrol sulfate ester is likely to bechemically stable over atmospheric timescales. Aerosol mass spectra only showan increase in the intensity of bisulfate ion (HSO4-) afteroxidation, suggesting the importance of fragmentation processes. Overall,potassium 3-methyltetrol sulfate ester likely decomposes to form volatilefragmentation products and aqueous-phasemore »sulfate radial anion(SO4⚫-). SO4⚫- subsequently undergoesintermolecular hydrogen abstraction to form HSO4-. These processesappear to explain the compositional evolution of 3-methyltetrol sulfate esterduring heterogeneous OH oxidation.« less