skip to main content


Title: In Vivo Targeting of Escherichia coli with Vancomycin-Arginine
ABSTRACT The ability of vancomycin-arginine (V-r) to extend the spectrum of activity of glycopeptides to Gram-negative bacteria was investigated. Its MIC towards Escherichia coli , including β-lactamase expressing Ambler classes A, B, and D, was 8 to 16 μg/ml. Addition of 8 times the MIC of V-r to E. coli was acutely bactericidal and associated with a low frequency of resistance (<2.32 × 10 −10 ). In vivo , V-r markedly reduced E. coli burden by >7 log 10 CFU/g in a thigh muscle model. These data warrant further development of V-r in combatting E. coli , including resistant forms.  more » « less
Award ID(s):
1856414
PAR ID:
10274579
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Antimicrobial Agents and Chemotherapy
Volume:
65
Issue:
4
ISSN:
0066-4804
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Semrau, Jeremy D (Ed.)
    ABSTRACT <p><italic>Escherichia coli</italic>is a promising subject for globally coordinated surveillance of antimicrobial resistance (AMR) in water environments due to its clinical relevance and widespread use as an indicator of fecal contamination. Cefotaxime-resistant<italic>E. coli</italic>was recently evaluated favorably for this purpose by the World Health Organization TriCycle Protocol, which specifies tryptone bile x-glucuronide (TBX) medium and incubation at 35°C. We assessed comparability with the U.S. Environmental Protection Agency-approved method for<italic>E. coli</italic>quantification, which uses membrane-thermotolerant<italic>E. coli</italic>(mTEC) agar and incubation at 44.5°C, in terms of recovery of<italic>E. coli</italic>and cefotaxime-resistant<italic>E. coli</italic>from wastewater influent and surface waters. Total<italic>E. coli</italic>concentrations in wastewater influent were 10<sup>6</sup>–10<sup>8</sup>CFU/100 mL, while cefotaxime-resistant<italic>E. coli</italic>were ~100-fold lower. Total<italic>E. coli</italic>in surface waters were ~10<sup>2</sup>CFU/100 mL, and cefotaxime-resistant isolates were near the limit of detection (0.4 CFU/100 mL). Total and putative cefotaxime-resistant<italic>E. coli</italic>concentrations did not differ significantly between media or by incubation method; however, colonies isolated on mTEC were more frequently confirmed to species (97.1%) compared to those from TBX (92.5%). Incubation in a water bath at 44.5°C significantly decreased non-specific background growth and improved confirmation frequency on both media (97.4%) compared to incubation at 35°C (92.3%). This study helps to advance globally coordinated AMR in water environments and suggests that the TriCycle Protocol is adaptable to other standard methods that may be required in different locales, while also offering a means to improve specificity by decreasing the frequency of false-positive identification of cefotaxime-resistant<italic>E. coli</italic>by modifying incubation conditions.</p><sec><title>IMPORTANCE

    As antibiotic-resistant bacteria in water environments are increasingly recognized as contributors to the global antibiotic resistance crisis, the need for a monitoring subject that captures antibiotic resistance trends on a global scale increases. The World Health Organization TriCycle Protocol proposes the use of cefotaxime-resistantEscherichia coliisolated on tryptone bile x-glucuronide agar. The U.S. Environmental Protection Agency (USEPA) criteria for safe recreational waters also useE. colias an indicator but specify the use of mTEC agar at a higher incubation temperature (44.5°C vs 35°C). We assessed the comparability of these methods for isolating total and cefotaxime-resistantE. coli, finding overall good agreement and performance, but significantly higher specificity towardE. coliselection with the use of the USEPA incubation protocol and mTEC agar. This study is the first to directly compare these methods and provides evidence that the methods may be used interchangeably for global surveillance of antibiotic resistance in the environment.

     
    more » « less
  2. Arsenic methylation contributes to the formation and diversity of environmental organoarsenicals, an important process in the arsenic biogeochemical cycle. The arsM gene encoding an arsenite (As(III)) S-adenosylmethionine (SAM) methyltransferase is widely distributed in members of every kingdom. A number of ArsM enzymes have been shown to have different patterns of methylation. When incubated with inorganic As(III), Burkholderia gladioli GSRB05 has been shown to synthesize the organoarsenical antibiotic arsinothricin (AST) but does not produce either methylarsenate (MAs(V)) or dimethylarsenate (DMAs(V)). Here, we show that cells of B. gladioli GSRB05 synthesize DMAs(V) when cultured with either MAs(III) or MAs(V). Heterologous expression of the BgarsM gene in Escherichia coli conferred resistance to MAs(III) but not As(III). The cells methylate MAs(III) and the AST precursor, reduced trivalent hydroxyarsinothricin (R-AST-OH) but do not methylate inorganic As(III). Similar results were obtained with purified BgArsM. Compared with ArsM orthologs, BgArsM has an additional 37 amino acid residues in a linker region between domains. Deletion of the additional 37 residues restored As(III) methylation activity. Cells of E. coli co-expressing the BgarsL gene encoding the noncanonical radical SAM enzyme that catalyzes the synthesis of R-AST-OH together with the BgarsM gene produce much more of the antibiotic AST compared with E. coli cells co-expressing BgarsL together with the CrarsM gene from Chlamydomonas reinhardtii, which lacks the sequence for additional 37 residues. We propose that the presence of the insertion reduces the fitness of B. gladioli because it cannot detoxify inorganic arsenic but concomitantly confers an evolutionary advantage by increasing the ability to produce AST. 
    more » « less
  3. The monitoring of drinking water for indicators of fecal contamination is crucial for ensuring a safe supply. In this study, a novel electrochemical method was developed for the rapid and sensitive detection of Escherichia coli ( E. coli ) in drinking water. This strategy is based on the use of engineered bacteriophages (phages) to separate and concentrate target E. coli when conjugated with magnetic beads, and to facilitate the detection by expressing gold binding peptides fused alkaline phosphatase (GBPs-ALP). The fusion protein GBPs-ALP has both the enzymatic activity and the ability to directly bind onto a gold surface. This binding-peptide mediated immobilization method provided a novel and simple approach to immobilize proteins on a solid surface, requiring no post-translational modifications. The concentration of E. coli was determined by measuring the activity of the ALP on gold electrodes electrochemically using linear sweep voltammetry (LSV). This approach was successfully applied in the detection of E. coli in drinking water. We were able to detect 10 5 CFU mL −1 of E. coli within 4 hours. After 9 hours of preincubation, 1 CFU of E. coli in 100 mL of drinking water was detected with a total assay time of 12 hours. This approach compares favorably to the current EPA method and has the potential to be applied to detect different bacteria in other food matrices. 
    more » « less
  4. ABSTRACT The fecal indicator bacterial species Escherichia coli is an important measure of water quality and a leading cause of impaired surface waters. We investigated the impact of the filter-feeding metazooplankton Daphnia magna on the inactivation of E. coli . The E. coli clearance rates of these daphnids were calculated from a series of batch experiments conducted under variable environmental conditions. Batch system experiments of 24 to 48 h in duration were completed to test the impacts of bacterial concentration, organism density, temperature, and water type. The maximum clearance rate for adult D. magna organisms was 2 ml h −1 organism −1 . Less than 5% of E. coli removed from water by daphnids was recoverable from excretions. Sorption of E. coli on daphnid carapaces was not observed. As a comparison, the clearance rates of the freshwater rotifer Branchionus calyciflorus were also calculated for select conditions. The maximum clearance rate for B. calyciflorus was 6 × 10 −4  ml h −1 organism −1 . This research furthers our understanding of the impacts of metazooplankton predation on E. coli inactivation and the effects of environmental variables on filter feeding. Based on our results, metazooplankton can play an important role in the reduction of E. coli in natural treatment systems under environmentally relevant conditions. IMPORTANCE Escherichia coli is a fecal indicator bacterial species monitored by the U.S. Environmental Protection Agency to assess microbial water quality. Due to the potential human health implications linked to high levels of E. coli , it is important to understand the inactivation or reduction mechanisms in surface waters. Our research examines the capacities of two types of widespread filter-feeding freshwater metazooplankton, Daphnia magna and Brachionus calyciflorus , to reduce E. coli concentrations. We examine the impacts of different environmentally relevant conditions on the clearance rates. Our results contribute to a better understanding of the importance of metazooplankton in controlling E. coli concentrations and what conditions will reduce or increase grazing. These results provide baseline data to support future efforts to develop a quantitative model relating zooplankton uptake rates to relevant environmental variables. 
    more » « less
  5. Oliveira, Pedro H. (Ed.)
    ABSTRACT There is an urgent need for strategies to discover secondary drugs to prevent or disrupt antimicrobial resistance (AMR), which is causing >700,000 deaths annually. Here, we demonstrate that tetracycline-resistant (Tet R ) Escherichia coli undergoes global transcriptional and metabolic remodeling, including downregulation of tricarboxylic acid cycle and disruption of redox homeostasis, to support consumption of the proton motive force for tetracycline efflux. Using a pooled genome-wide library of single-gene deletion strains, at least 308 genes, including four transcriptional regulators identified by our network analysis, were confirmed as essential for restoring the fitness of Tet R E. coli during treatment with tetracycline. Targeted knockout of ArcA, identified by network analysis as a master regulator of this new compensatory physiological state, significantly compromised fitness of Tet R E. coli during tetracycline treatment. A drug, sertraline, which generated a similar metabolome profile as the arcA knockout strain, also resensitized Tet R E. coli to tetracycline. We discovered that the potentiating effect of sertraline was eliminated upon knocking out arcA , demonstrating that the mechanism of potential synergy was through action of sertraline on the tetracycline-induced ArcA network in the Tet R strain. Our findings demonstrate that therapies that target mechanistic drivers of compensatory physiological states could resensitize AMR pathogens to lost antibiotics. IMPORTANCE Antimicrobial resistance (AMR) is projected to be the cause of >10 million deaths annually by 2050. While efforts to find new potent antibiotics are effective, they are expensive and outpaced by the rate at which new resistant strains emerge. There is desperate need for a rational approach to accelerate the discovery of drugs and drug combinations that effectively clear AMR pathogens and even prevent the emergence of new resistant strains. Using tetracycline-resistant (Tet R ) Escherichia coli , we demonstrate that gaining resistance is accompanied by loss of fitness, which is restored by compensatory physiological changes. We demonstrate that transcriptional regulators of the compensatory physiologic state are promising drug targets because their disruption increases the susceptibility of Tet R E. coli to tetracycline. Thus, we describe a generalizable systems biology approach to identify new vulnerabilities within AMR strains to rationally accelerate the discovery of therapeutics that extend the life span of existing antibiotics. 
    more » « less