skip to main content


Title: MUTANT: A Training Paradigm for Out-of-Distribution Generalization in Visual Question Answering
While progress has been made on the visual question answering leaderboards, models often utilize spurious correlations and priors in datasets under the i.i.d. setting. As such, evaluation on out-of-distribution (OOD) test samples has emerged as a proxy for generalization. In this paper, we present \textit{MUTANT}, a training paradigm that exposes the model to perceptually similar, yet semantically distinct \textit{mutations} of the input, to improve OOD generalization, such as the VQA-CP challenge. Under this paradigm, models utilize a consistency-constrained training objective to understand the effect of semantic changes in input (question-image pair) on the output (answer). Unlike existing methods on VQA-CP, \textit{MUTANT} does not rely on the knowledge about the nature of train and test answer distributions. \textit{MUTANT} establishes a new state-of-the-art accuracy on VQA-CP with a 10.57{\%} improvement. Our work opens up avenues for the use of semantic input mutations for OOD generalization in question answering.  more » « less
Award ID(s):
1816039
NSF-PAR ID:
10276935
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Page Range / eLocation ID:
878 to 892
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Out-of-distribution (OOD) testing is increasingly popular for evaluating a machine learning system's ability to generalize beyond the biases of a training set. OOD benchmarks are designed to present a different joint distribution of data and labels between training and test time. VQA-CP has become the standard OOD benchmark for visual question answering, but we discovered three troubling practices in its current use. First, most published methods rely on explicit knowledge of the construction of the OOD splits. They often rely on ``inverting'' the distribution of labels, e.g. answering mostly 'yes' when the common training answer is 'no'. Second, the OOD test set is used for model selection. Third, a model's in-domain performance is assessed after retraining it on in-domain splits (VQA v2) that exhibit a more balanced distribution of labels. These three practices defeat the objective of evaluating generalization, and put into question the value of methods specifically designed for this dataset. We show that embarrassingly-simple methods, including one that generates answers at random, surpass the state of the art on some question types. We provide short- and long-term solutions to avoid these pitfalls and realize the benefits of OOD evaluation. 
    more » « less
  2. Zong, Chengqing ; Xia, Fei ; Li, Wenjie ; Navigli, Roberto (Ed.)
    Methodologies for training visual question answering (VQA) models assume the availability of datasets with human-annotated ImageQuestion-Answer (I-Q-A) triplets. This has led to heavy reliance on datasets and a lack of generalization to new types of questions and scenes. Linguistic priors along with biases and errors due to annotator subjectivity have been shown to percolate into VQA models trained on such samples. We study whether models can be trained without any human-annotated Q-A pairs, but only with images and their associated textual descriptions or captions. We present a method to train models with synthetic Q-A pairs generated procedurally from captions. Additionally, we demonstrate the efficacy of spatial-pyramid image patches as a simple but effective alternative to dense and costly object bounding box annotations used in existing VQA models. Our experiments on three VQA benchmarks demonstrate the efficacy of this weakly-supervised approach, especially on the VQA-CP challenge, which tests performance under changing linguistic priors. 
    more » « less
  3. Merlo, Paola ; Tiedemann, Jorg ; Tsarfaty, Reut (Ed.)
    GQA (CITATION) is a dataset for real-world visual reasoning and compositional question answering. We found that many answers predicted by the best vision-language models on the GQA dataset do not match the ground-truth answer but still are semantically meaningful and correct in the given context. In fact, this is the case with most existing visual question answering (VQA) datasets where they assume only one ground-truth answer for each question. We propose Alternative Answer Sets (AAS) of ground-truth answers to address this limitation, which is created automatically using off-the-shelf NLP tools. We introduce a semantic metric based on AAS and modify top VQA solvers to support multiple plausible answers for a question. We implement this approach on the GQA dataset and show the performance improvements. 
    more » « less
  4. While there has been substantial progress in text comprehension through simple factoid question answering, more holistic comprehension of a discourse still presents a major challenge (Dunietz et al., 2020). Someone critically reflecting on a text as they read it will pose curiosity-driven, often open-ended questions, which reflect deep understanding of the content and require complex reasoning to answer (Ko et al., 2020; Westera et al., 2020). A key challenge in building and evaluating models for this type of discourse comprehension is the lack of annotated data, especially since collecting answers to such questions requires high cognitive load for annotators. This paper presents a novel paradigm that enables scalable data collection targeting the comprehension of news documents, viewing these questions through the lens of discourse. The resulting corpus, DCQA (Discourse Comprehension by Question Answering), captures both discourse and semantic links between sentences in the form of free-form, open-ended questions. On an evaluation set that we annotated on questions from Ko et al. (2020), we show that DCQA provides valuable supervision for answering open-ended questions. We additionally design pre-training methods utilizing existing question-answering resources, and use synthetic data to accommodate unanswerable questions. 
    more » « less
  5. Embodied Question Answering (EQA) is a relatively new task where an agent is asked to answer questions about its environment from egocentric perception. EQA as introduced in [8] makes the fundamental assumption that every question, e.g. “what color is the car?”, has exactly one target (“car”) being inquired about. This assumption puts a direct limitation on the abilities of the agent. We present a generalization of EQA – Multi-Target EQA (MT-EQA). Specifically, we study questions that have multiple targets in them, such as “Is the dresser in the bedroom bigger than the oven in the kitchen?”, where the agent has to navigate to multiple locations (“dresser in bedroom”, “oven in kitchen”) and perform comparative reasoning (“dresser” bigger than “oven”) before it can answer a question. Such questions require the development of entirely new modules or components in the agent. To address this, we propose a modular architecture composed of a program generator, a controller, a navigator, and a VQA module. The program generator converts the given question into sequential executable sub-programs; the navigator guides the agent to multiple locations pertinent to the navigation-related sub-programs; and the controller learns to select relevant observations along its path. These observations are then fed to the VQA module to predict the answer. We perform detailed analysis for each of the model components and show that our joint model can outperform previous methods and strong baselines by a significant margin. Project page: https://embodiedqa.org. 
    more » « less