skip to main content

Title: The impact of split and displacement sudden stratospheric warmings on the troposphere
Although sudden stratospheric warmings (SSWs) can improve subseasonal-to-seasonal forecasts, it is unclear whether the two types of SSW - displacements and splits - have different near- surface effects. To examine the longer-term (i.e., multi-week lead) tropospheric response to displacements and splits, we utilize an intermediate-complexity model and impose wave-1 and wave-2 stratospheric heating perturbations spun-off from a control run. At longer lags, the tropospheric response is found to be insensitive to both the wavenumber and location of the imposed heating, in agreement with freely evolving displacements and splits identified in the control run. At shorter lags, however, large differences are found between displacements and splits in both the control run and the different wavenumber- forced events. In particular, in the control run, the free-running splits have an immediate barotropic response throughout the stratosphere and troposphere whereas displacements take 1–2 weeks before a near-surface response becomes evident. Interestingly, this barotropic response found during CTRL splits is not captured by the barotropically forced wave-2 events, indicating that the zonal-mean tropospheric circulation is somehow coupled with the generation of the wave-2 splits. It is also found that in the control run, displacements yield stronger Polar-Cap temperature anomalies than splits, yet both still yield similar magnitude more » tropospheric responses. Hence, the strength of the stratospheric warming is not the only governing factor in the surface response. Overall, SSW classification based on vortex morphology may be useful for subseasonal but not seasonal tropospheric prediction. « less
Authors:
Award ID(s):
1901352
Publication Date:
NSF-PAR ID:
10275329
Journal Name:
Journal of geophysical research
Volume:
126
Issue:
8
ISSN:
0148-0227
Sponsoring Org:
National Science Foundation
More Like this
  1. The tropospheric response to midwinter sudden stratospheric warmings (SSWs) is examined using an idealized model. SSW events are triggered by imposing high-latitude stratospheric heating perturbations of varying magnitude for only a few days, spun off from a free-running control integration (CTRL). The evolution of the thermally triggered SSWs is then compared with naturally occurring SSWs identified in CTRL. By applying a heating perturbation, with no modification to the momentum budget, it is possible to isolate the tropospheric response directly attributable to a change in the stratospheric polar vortex, independent of any planetary wave momentum torques involved in the initiation of an SSW. Zonal-wind anomalies associated with the thermally triggered SSWs first propagate downward to the high-latitude troposphere after ~2 weeks, before migrating equatorward and stalling at midlatitudes, where they straddle the near-surface jet. After ~3 weeks, the circulation and eddy fluxes associated with thermally triggered SSWs evolve very similarly to SSWs in CTRL, despite the lack of initial planetary wave driving. This suggests that at longer lags, the tropospheric response to SSWs is generic and it is found to be linearly governed by the strength of the lower-stratospheric warming, whereas at shorter lags, the initial formation of the SSW potentiallymore »plays a large role in the downward coupling. In agreement with previous studies, synoptic waves are found to play a key role in the persistent tropospheric jet shift at long lags. Synoptic waves appear to respond to the enhanced midlatitude baroclinicity associated with the tropospheric jet shift, and preferentially propagate poleward in an apparent positive feedback with changes in the high-latitude refractive index.« less
  2. Abstract. The effects of wave–wave interactions on sudden stratospheric warming formation are investigated using an idealized atmospheric general circulation model, in which tropospheric heating perturbations of zonal wave numbers 1 and 2 are used to produce planetary-scale wave activity. Zonal wave–wave interactions are removed at different vertical extents of the atmosphere in order to examine the sensitivity of stratospheric circulation to local changes in wave–wave interactions. We show that the effects of wave–wave interactions on sudden warming formation, including sudden warming frequencies, are strongly dependent on the wave number of the tropospheric forcing and the vertical levels where wave–wave interactions are removed. Significant changes in sudden warming frequencies are evident when wave–wave interactions are removed even when the lower-stratospheric wave forcing does not change, highlighting the fact that the upper stratosphere is not a passive recipient of wave forcing from below. We find that while wave–wave interactions are required in the troposphere and lower stratosphere to produce displacements when wave number 2 heating is used, both splits and displacements can be produced without wave–wave interactions in the troposphere and lower stratosphere when the model is forced by wave number 1 heating. We suggest that the relative strengths of wave numbermore »1 and 2 vertical wave flux entering the stratosphere largely determine the split and displacement ratios when wave number 2 forcing is used but not wave number 1.« less
  3. Abstract

    A dry-core idealized general circulation model with a stratospheric polar vortex in the Northern Hemisphere is run with a combination of simplified topography and imposed tropospheric temperature perturbations, each located in the Northern Hemisphere with a zonal wavenumber of 1. The phase difference between the imposed temperature wave and the topography is varied to understand what effect this has on the occurrence of polar vortex displacements. Geometric moments are used to identify the centroid of the polar vortex for the purposes of classifying whether or not the polar vortex is displaced. Displacements of the polar vortex are a response to increased tropospheric wave activity. Compared to a model run with only topography, the likelihood of the polar vortex being displaced increases when the warm region is located west of the topography peak, and decreases when the cold region is west of the topography peak. This response from the polar vortex is due to the modulation of vertically propagating wave activity by the temperature forcing. When the southerly winds on the western side of the topographically forced anticyclone are collocated with warm- or cold-temperature forcing, the vertical wave activity flux in the troposphere becomes more positive or negative, respectively. Thismore »is in line with recent reanalysis studies that showed that anomalous warming west of the surface pressure high, in the climatological standing wave, precedes polar vortex disturbances.

    « less
  4. Abstract

    Subseasonal weather prediction can reduce economic disruption and loss of life, especially during “windows of opportunity” when noteworthy events in the Earth system are followed by characteristic weather patterns. Sudden stratospheric warmings (SSWs), breakdowns of the winter stratospheric polar vortex, are one such event. They often precede warm temperatures in Northern Canada and cold, stormy weather throughout Europe and the United States - including the most recent SSW on January 5th, 2021. Here we assess the drivers of surface weather in the weeks following the SSW through initial condition “scrambling” experiments using the real-time CESM2(WACCM6) Earth system prediction framework. We find that the SSW itself had a limited impact, and that stratospheric polar vortex stretching and wave reflection had no discernible contribution to the record cold in North America in February. Instead, the tropospheric circulation and bidirectional coupling between the troposphere and stratosphere were dominant contributors to variability.

  5. Abstract The Whole Atmosphere Community Climate Model, version 4 (WACCM4), is used to investigate the influence of stratospheric conditions on the development of sudden stratospheric warmings (SSWs). To this end, targeted experiments are performed on selected modeled SSW events. Specifically, the model is reinitialized three weeks before a given SSW, relaxing the surface fluxes, winds, and temperature below 10 km to the corresponding fields from the free-running simulation. Hence, the tropospheric wave evolution is unaltered across the targeted experiments, but the stratosphere itself can evolve freely. The stratospheric zonal-mean state is then altered 21 days prior to the selected SSWs and rerun with an ensemble of different initial conditions. It is found that a given tropospheric evolution concomitant with the development of an SSW does not uniquely determine the occurrence of an event and that the stratospheric conditions are relevant to the subsequent evolution of the stratospheric flow toward an SSW, even for a fixed tropospheric evolution. It is also shown that interpreting the meridional heat flux at 100 hPa as a proxy of the tropospheric injection of wave activity into the stratosphere should be regarded with caution and that stratospheric dynamics critically influence the heat flux at that altitude.