skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Generic Nature of the Tropospheric Response to Sudden Stratospheric Warmings
The tropospheric response to midwinter sudden stratospheric warmings (SSWs) is examined using an idealized model. SSW events are triggered by imposing high-latitude stratospheric heating perturbations of varying magnitude for only a few days, spun off from a free-running control integration (CTRL). The evolution of the thermally triggered SSWs is then compared with naturally occurring SSWs identified in CTRL. By applying a heating perturbation, with no modification to the momentum budget, it is possible to isolate the tropospheric response directly attributable to a change in the stratospheric polar vortex, independent of any planetary wave momentum torques involved in the initiation of an SSW. Zonal-wind anomalies associated with the thermally triggered SSWs first propagate downward to the high-latitude troposphere after ~2 weeks, before migrating equatorward and stalling at midlatitudes, where they straddle the near-surface jet. After ~3 weeks, the circulation and eddy fluxes associated with thermally triggered SSWs evolve very similarly to SSWs in CTRL, despite the lack of initial planetary wave driving. This suggests that at longer lags, the tropospheric response to SSWs is generic and it is found to be linearly governed by the strength of the lower-stratospheric warming, whereas at shorter lags, the initial formation of the SSW potentially plays a large role in the downward coupling. In agreement with previous studies, synoptic waves are found to play a key role in the persistent tropospheric jet shift at long lags. Synoptic waves appear to respond to the enhanced midlatitude baroclinicity associated with the tropospheric jet shift, and preferentially propagate poleward in an apparent positive feedback with changes in the high-latitude refractive index.  more » « less
Award ID(s):
1852727
PAR ID:
10160467
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
33
Issue:
13
ISSN:
0894-8755
Page Range / eLocation ID:
5589 to 5610
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Although sudden stratospheric warmings (SSWs) can improve subseasonal-to-seasonal forecasts, it is unclear whether the two types of SSW - displacements and splits - have different near- surface effects. To examine the longer-term (i.e., multi-week lead) tropospheric response to displacements and splits, we utilize an intermediate-complexity model and impose wave-1 and wave-2 stratospheric heating perturbations spun-off from a control run. At longer lags, the tropospheric response is found to be insensitive to both the wavenumber and location of the imposed heating, in agreement with freely evolving displacements and splits identified in the control run. At shorter lags, however, large differences are found between displacements and splits in both the control run and the different wavenumber- forced events. In particular, in the control run, the free-running splits have an immediate barotropic response throughout the stratosphere and troposphere whereas displacements take 1–2 weeks before a near-surface response becomes evident. Interestingly, this barotropic response found during CTRL splits is not captured by the barotropically forced wave-2 events, indicating that the zonal-mean tropospheric circulation is somehow coupled with the generation of the wave-2 splits. It is also found that in the control run, displacements yield stronger Polar-Cap temperature anomalies than splits, yet both still yield similar magnitude tropospheric responses. Hence, the strength of the stratospheric warming is not the only governing factor in the surface response. Overall, SSW classification based on vortex morphology may be useful for subseasonal but not seasonal tropospheric prediction. 
    more » « less
  2. Abstract Sudden stratospheric warmings (SSWs) are impressive fluid dynamical events in which large and rapid temperature increases in the winter polar stratosphere (∼10–50 km) are associated with a complete reversal of the climatological wintertime westerly winds. SSWs are caused by the breaking of planetary‐scale waves that propagate upwards from the troposphere. During an SSW, the polar vortex breaks down, accompanied by rapid descent and warming of air in polar latitudes, mirrored by ascent and cooling above the warming. The rapid warming and descent of the polar air column affect tropospheric weather, shifting jet streams, storm tracks, and the Northern Annular Mode, making cold air outbreaks over North America and Eurasia more likely. SSWs affect the atmosphere above the stratosphere, producing widespread effects on atmospheric chemistry, temperatures, winds, neutral (nonionized) particles and electron densities, and electric fields. These effects span both hemispheres. Given their crucial role in the whole atmosphere, SSWs are also seen as a key process to analyze in climate change studies and subseasonal to seasonal prediction. This work reviews the current knowledge on the most important aspects of SSWs, from the historical background to dynamical processes, modeling, chemistry, and impact on other atmospheric layers. 
    more » « less
  3. Abstract The tropospheric response to Sudden Stratospheric Warmings (SSWs) is associated with an equatorward shift in the midlatitude jet and associated storm tracks, while Strong Polar Vortex (SPV) events elicit a contrasting response. Recent analyses of the North Atlantic jet using probability density functions of a jet latitude index have identified three preferred jet latitudes, raising the question of whether the tropospheric response to SSWs and SPVs results from a change in relative frequencies of these preferred jet regimes rather than a systematic jet shift. We explore this question using atmospheric reanalysis data from 1979 to 2018 (26 SSWs and 33 SPVs), and a 202‐years integration of the Whole Atmosphere Community Climate Model (92 SSWs and 68 SPVs). Following SSWs, the northern jet regime becomes less common and the central and southern regimes become more common. These changes occur almost immediately following “split” vortex events, but are more delayed following “displacement” events. In contrast, the northern regime becomes more frequent and the southern regime less frequent following SPV events. Following SSWs, composites of 500‐hPa geopotential heights, surface air temperatures, and precipitation most closely resemble composites of the southern jet regime, and are generally opposite in sign to the composites of the northern jet regime. These comparisons are reversed following SPVs. Thus, one possible interpretation is that the two southernmost regimes appear to be favored following SSWs, while the southernmost regime becomes less common following SPVs. 
    more » « less
  4. Abstract An intermediate-complexity moist general circulation model is used to investigate the factors controlling the magnitude of the surface impact from Southern Hemisphere springtime ozone depletion. In contrast to previous idealized studies, a model with full radiation is used; furthermore, the model can be run with a varied representation of the surface, from a zonally uniform aquaplanet to a configuration with realistic stationary waves. The model captures the observed summertime positive Southern Annular Mode response to stratospheric ozone depletion. While synoptic waves dominate the long-term poleward jet shift, the initial response includes changes in planetary waves that simultaneously moderate the polar cap cooling (i.e., a negative feedback) and also constitute nearly one-half of the initial momentum flux response that shifts the jet poleward. The net effect is that stationary waves weaken the circulation response to ozone depletion in both the stratosphere and troposphere and also delay the response until summer rather than spring when ozone depletion peaks. It is also found that Antarctic surface cooling in response to ozone depletion helps to strengthen the poleward shift; however, shortwave surface effects of ozone are not critical. These surface temperature and stationary wave feedbacks are strong enough to overwhelm the previously recognized jet latitude/persistence feedback, potentially explaining why some recent comprehensive models do not exhibit a clear relationship between jet latitude/persistence and the magnitude of the response to ozone. The jet response is shown to be linear with respect to the magnitude of the imposed stratospheric perturbation, demonstrating the usefulness of interannual variability in ozone depletion for subseasonal forecasting. 
    more » « less
  5. null (Ed.)
    Abstract The Whole Atmosphere Community Climate Model, version 4 (WACCM4), is used to investigate the influence of stratospheric conditions on the development of sudden stratospheric warmings (SSWs). To this end, targeted experiments are performed on selected modeled SSW events. Specifically, the model is reinitialized three weeks before a given SSW, relaxing the surface fluxes, winds, and temperature below 10 km to the corresponding fields from the free-running simulation. Hence, the tropospheric wave evolution is unaltered across the targeted experiments, but the stratosphere itself can evolve freely. The stratospheric zonal-mean state is then altered 21 days prior to the selected SSWs and rerun with an ensemble of different initial conditions. It is found that a given tropospheric evolution concomitant with the development of an SSW does not uniquely determine the occurrence of an event and that the stratospheric conditions are relevant to the subsequent evolution of the stratospheric flow toward an SSW, even for a fixed tropospheric evolution. It is also shown that interpreting the meridional heat flux at 100 hPa as a proxy of the tropospheric injection of wave activity into the stratosphere should be regarded with caution and that stratospheric dynamics critically influence the heat flux at that altitude. 
    more » « less