This paper presents an approach to passively realize any specified object spatial compliance using the grasp of a robotic hand. The kinematically anthropomorphic hands considered have multiple 4-joint fingers making hard point contact with the held object, and the joints of each finger have selectable passive elastic behavior. It is shown that the space of passively realizable compliances is restricted by the kinematic structure of the anthropomorphic hand. To achieve an arbitrary compliant behavior, fingers must be able to adjust their orientation. Synthesis procedures for grasps having 3, 4, and 5 or more fingers are developed. These procedures identify the finger configurations and the individual finger joint compliances needed to passively achieve any specified spatial object compliance matrix in the 20-dimensional subspace of grasp-realizable behaviors.
more »
« less
Improving Grasp Classification through Spatial Metrics Available from Sensors
We present a method for classifying the quality of near-contact grasps using spatial metrics that are recoverable from sensor data. Current methods often rely on calculating precise contact points, which are difficult to calculate in real life, or on tactile sensors or image data, which may be unavailable for some applications. Our method, in contrast, uses a mix of spatial metrics that do not depend on the fingers being in contact with the object, such as the object's approximate size and location. The grasp quality can be calculated {\em before} the fingers actually contact the object, enabling near-grasp quality prediction. Using a random forest classifier, the resulting system is able to predict grasp quality with 96\% accuracy using spatial metrics based on the locations of the robot palm, fingers and object. Furthermore, it can maintain an accuracy of 90\% when exposed to 10\% noise across all its inputs.
more »
« less
- Award ID(s):
- 1911050
- PAR ID:
- 10275405
- Date Published:
- Journal Name:
- IEEE International Conference on Robotics and Automation
- ISSN:
- 1049-3492
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper explores the problem of autonomous, in-hand regrasping-the problem of moving from an initial grasp on an object to a desired grasp using the dexterity of a robot's fingers. We propose a planner for this problem which alternates between finger gaiting, and in-grasp manipulation. Finger gaiting enables the robot to move a single finger to a new contact location on the object, while the remaining fingers stably hold the object. In-grasp manipulation moves the object to a new pose relative to the robot's palm, while maintaining the contact locations between the hand and object. Given the object's geometry (as a mesh), the hand's kinematic structure, and the initial and desired grasps, we plan a sequence of finger gaits and object reposing actions to reach the desired grasp without dropping the object. We propose an optimization based approach and report in-hand regrasping plans for 5 objects over 5 in-hand regrasp goals each. The plans generated by our planner are collision free and guarantee kinematic feasibility.more » « less
-
In this paper we define two feature representations for grasping. These representations capture hand-object geometric relationships at the near-contact stage - before the fingers close around the object. Their benefits are: 1) They are stable under noise in both joint and pose variation. 2) They are largely hand and object agnostic, enabling direct comparison across different hand morphologies. 3) Their format makes them suitable for direct application of machine learning techniques developed for images. We validate the representations by: 1) Demonstrating that they can accurately predict the distribution of ε-metric values generated by kinematic noise. I.e., they capture much of the information inherent in contact points and force vectors without the corresponding instabilities. 2) Training a binary grasp success classifier on a real-world data set consisting of 588 grasps.more » « less
-
Vacuum-based end effectors are widely used in in- dustry and are often preferred over parallel-jaw and multifinger grippers due to their ability to lift objects with a single point of contact. Suction grasp planners often target planar surfaces on point clouds near the estimated centroid of an object. In this paper, we propose a compliant suction contact model that computes the quality of the seal between the suction cup and local target surface and a measure of the ability of the suction grasp to resist an external gravity wrench. To characterize grasps, we estimate robustness to perturbations in end-effector and object pose, material properties, and external wrenches. We analyze grasps across 1,500 3D object models to generate Dex- Net 3.0, a dataset of 2.8 million point clouds, suction grasps, and grasp robustness labels. We use Dex-Net 3.0 to train a Grasp Quality Convolutional Neural Network (GQ-CNN) to classify robust suction targets in point clouds containing a single object. We evaluate the resulting system in 350 physical trials on an ABB YuMi fitted with a pneumatic suction gripper. When eval- uated on novel objects that we categorize as Basic (prismatic or cylindrical), Typical (more complex geometry), and Adversarial (with few available suction-grasp points) Dex-Net 3.0 achieves success rates of 98%, 82%, and 58% respectively, improving to 81% in the latter case when the training set includes only adversarial objects. Code, datasets, and supplemental material can be found at http://berkeleyautomation.github.io/dex-net.more » « less
-
Robotic grasping is successful when a robot can sense and grasp an object without letting it slip. Beyond industrial robotic tasks, there are two main robotic grasping methods. The first is planning-based grasping where the object geometry is known beforehand and stable grasps are calculated using algorithms [1]. The second uses tactile feedback. Currently, there are capacitive sensors placed beneath stiff pads on the front of robotic fingers [2]. With post-execution grasp adjustment procedures to estimate grasp stability, a support vector machine classifier can distinguish stable and unstable grasps. The accuracy across the classes of tested objects is 81% [1]. We are proposing to improve the classifier's accuracy by wrapping flexible sensors around the robotic finger to gain information from the edges and sides of the finger.more » « less
An official website of the United States government

