Abstract The dominant form of oxygen in cold molecular clouds is gas-phase carbon monoxide (CO) and ice-phase water (H2O). Yet, in planet-forming disks around young stars, gas-phase CO and H2O are less abundant relative to their interstellar medium values, and no other major oxygen-carrying molecules have been detected. Some astrochemical models predict that gas-phase molecular oxygen (O2) should be a major carrier of volatile oxygen in disks. We report a deep search for emission from the isotopologue16O18O (NJ= 21− 01line at 233.946 GHz) in the nearby protoplanetary disk around TW Hya. We used imaging techniques and matched filtering to search for weak emission but do not detect16O18O. Based on our results, we calculate upper limits on the gas-phase O2abundance in TW Hya of (6.4–70) × 10−7relative to H, which is 2–3 orders of magnitude below solar oxygen abundance. We conclude that gas-phase O2is not a major oxygen carrier in TW Hya. Two other potential oxygen-carrying molecules, SO and SO2, were covered in our observations, which we also do not detect. Additionally, we report a serendipitous detection of the C15NNJ= 25/2− 13/2hyperfine transitions,F= 3 − 2 andF= 2 − 1, at 219.9 GHz, which we found via matched filtering and confirm through imaging.
more »
« less
Adsorption separation of heavier isotope gases in subnanometer carbon pores
Abstract Isotopes of heavier gases including carbon ( 13 C/ 14 C), nitrogen ( 13 N), and oxygen ( 18 O) are highly important because they can be substituted for naturally occurring atoms without significantly perturbing the biochemical properties of the radiolabelled parent molecules. These labelled molecules are employed in clinical radiopharmaceuticals, in studies of brain disease and as imaging probes for advanced medical imaging techniques such as positron-emission tomography (PET). Established distillation-based isotope gas separation methods have a separation factor ( S ) below 1.05 and incur very high operating costs due to high energy consumption and long processing times, highlighting the need for new separation technologies. Here, we show a rapid and highly selective adsorption-based separation of 18 O 2 from 16 O 2 with S above 60 using nanoporous adsorbents operating near the boiling point of methane (112 K), which is accessible through cryogenic liquefied-natural-gas technology. A collective-nuclear-quantum effect difference between the ordered 18 O 2 and 16 O 2 molecular assemblies confined in subnanometer pores can explain the observed equilibrium separation and is applicable to other isotopic gases.
more »
« less
- Award ID(s):
- 1703266
- PAR ID:
- 10275422
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Two-dimensional graphene-like materials, namely MXenes, have been proposed as potential materials for various applications. In this work, the reactivity and selectivity of four MXenes ( i.e. M 2 C (M = Ti, V, Nb, Mo)) and their oxygen-functionalized forms ( i.e. O-MXenes or M 2 CO 2 ) toward gas molecules were investigated by using the plane wave-based Density Functional Theory (DFT) calculations. Small gas molecules, which are commonly found in flue gas streams, are considered herein. Our results demonstrated that MXenes are very reactive. Chemisorption is a predominant process for gas adsorption on MXenes. Simultaneously dissociative adsorption can be observed in most cases. The high reactivity of their non-functionalized surface is attractive for catalytic applications. In contrast, their reactivity is reduced, but the selectivity is improved upon oxygen functionalization. Mo 2 CO 2 and V 2 CO 2 present good selectivity toward NO molecules, while Nb 2 CO 2 and Ti 2 CO 2 show good selectivity toward NH 3 . The electronic charge properties explain the nature of the substrates and also interactions between them and the adsorbed gases. Our results indicated that O-MXenes are potential materials for gas-separation/capture, -storage, -sensing, etc. Furthermore, their structural stability and SO 2 -tolerant nature are attractive properties for using them in a wide range of applications. Our finding provides good information to narrow down the choices of materials to be tested in future experimental work.more » « less
-
Abstract Constraining the physical and chemical structure of young embedded disks is crucial for understanding the earliest stages of planet formation. As part of the Early Planet Formation in Embedded Disks Atacama Large Millimeter/submillimeter Array Large Program, we present high spatial resolution (∼0.″1 or ∼15 au) observations of the 1.3 mm continuum and 13 CO J = 2–1, C 18 O J = 2–1, and SO J N = 6 5 –5 4 molecular lines toward the disk around the Class I protostar L1489 IRS. The continuum emission shows a ring-like structure at 56 au from the central protostar and tenuous, optically thin emission extending beyond ∼300 au. The 13 CO emission traces the warm disk surface, while the C 18 O emission originates from near the disk midplane. The coincidence of the radial emission peak of C 18 O with the dust ring may indicate a gap-ring structure in the gaseous disk as well. The SO emission shows a highly complex distribution, including a compact, prominent component at ≲30 au, which is likely to originate from thermally sublimated SO molecules. The compact SO emission also shows a velocity gradient along a direction tilted slightly (∼15°) with respect to the major axis of the dust disk, which we interpret as an inner warped disk in addition to the warp around ∼200 au suggested by previous work. These warped structures may be formed by a planet or companion with an inclined orbit, or by a gradual change in the angular momentum axis during gas infall.more » « less
-
Continued integration of technologies capable of achieving higher degrees of sustainability while meeting global material and energy demands is of singular importance in halting human-caused climate change. Gas separation membranes composed of metal–organic frameworks (MOFs) are considered promising candidates for such integration; owing to their modular, scalable nature and high degree of tunability they are seen essential to maintain separation functionality. However, prior to sustainable implementation, both an evaluation of MOF characteristics and an intensive examination of MOF–gas molecule interactions are necessary to fully understand the fundamental separation criteria as well as to define suitable ranges of gas separation conditions. Herein, we present our findings on the greenhouse gas separation capabilities of the hydrophilic, Al-based MIL-160 in the selective uptake of carbon dioxide (CO 2 ) from other relevant greenhouse gases, i.e. , methane (CH 4 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), and nitric oxide (NO), including gravimetric solubility, permeability, and diffusivity calculations. We found that a MIL-160 membrane has excellent applicability in the separation of gases of varying electronegativities, with a diffusivity selectivity of 72.0, 9.53, and 13.8 for CH 4 , NO 2 , and NO, respectively, relative to CO 2 . Further, we demonstrate that the selectivity at which gas molecules diffuse through the MIL-160 membrane varies strongly with the simulation pressure, suggesting that such membrane system is potentially an ideal candidate for the development of pressure-swing adsorption processes that achieve gas separations efficiently while mitigating the emission of greenhouse gases.more » « less
-
Abstract High-spatial-resolution observations of CO isotopologue line emission in protoplanetary disks at mid-inclinations (≈30°–75°) allow us to characterize the gas structure in detail, including radial and vertical substructures, emission surface heights and their dependencies on source characteristics, and disk temperature profiles. By combining observations of a suite of CO isotopologues, we can map the two-dimensional (r,z) disk structure from the disk upper atmosphere, as traced by CO, to near the midplane, as probed by less abundant isotopologues. Here, we present high-angular-resolution (≲0.″1 to ≈0.″2; ≈15–30 au) observations of CO,13CO, and C18O in either or bothJ= 2–1 andJ= 3–2 lines in the transition disks around DM Tau, Sz 91, LkCa 15, and HD 34282. We derived line emission surfaces in CO for all disks and in13CO for the DM Tau and LkCa 15 disks. With these observations, we do not resolve the vertical structure of C18O in any disk, which is instead consistent with C18O emission originating from the midplane. Both theJ= 2–1 andJ= 3–2 lines show similar heights. Using the derived emission surfaces, we computed radial and vertical gas temperature distributions for each disk, including empirical temperature models for the DM Tau and LkCa 15 disks. After combining our sample with literature sources, we find that13CO line emitting heights are also tentatively linked with source characteristics, e.g., stellar host mass, gas temperature, disk size, and show steeper trends than seen in CO emission surfaces.more » « less
An official website of the United States government

