skip to main content


Title: Evaluating Simple Ab Initio Models of the Hydrated Electron: The Role of Dynamical Fluctuations
Despite its importance in electron transfer reactions and radiation chemistry, there has been disagreement over the fundamental nature of the hydrated electron, such as whether or not it resides in a cavity. Mixed quantum/classical simulations of the hydrated electron give different structures depending on the pseudopotential employed, and ab initio models of computational necessity use small numbers of water molecules and/or provide insufficient statistics to compare to experimental observables. A few years ago, Kumar et al. (J. Phys. Chem. A 2015, 119, 9148) proposed a minimalist ab initio model of the hydrated electron with only a small number of explicitly treated water molecules plus a polarizable continuum model (PCM). They found that the optimized geometry had four waters arranged tetrahedrally around a central cavity, and that the calculated vertical detachment energy and radius of gyration agreed well with experiment, results that were largely independent of the level of theory employed. The model, however, is based on a fixed structure at 0 K and does not explicitly incorporate entropic contributions or the thermal fluctuations that should be associated with the room-temperature hydrated electron. Thus, in this paper, we extend the model of Kumar et al. by running Born−Oppenheimer molecular dynamics (BOMD) of a small number of water molecules with an excess electron plus PCM at room temperature. We find that when thermal fluctuations are introduced, the level of theory chosen becomes critical enough when only four waters are used that one of the waters dissociates from the cluster with certain density functionals. Moreover, even with an optimally tuned range-separated hybrid functional, at room temperature the tetrahedral orientation of the 0 K first-shell waters is entirely lost and the central cavity collapses, a process driven by the fact that the explicit water molecules prefer to make H-bonds with each other more than with the excess electron. The resulting average structure is quite similar to that produced by a noncavity mixed quantum/classical model, so that the minimalist 4-water BOMD models suffer from problems similar to those of noncavity models, such as predicting the wrong sign of the hydrated electron’s molar solvation volume. We also performed BOMD with 16 explicit water molecules plus an extra electron and PCM. We find that the inclusion of an entire second solvation shell of explicit water leads to little change in the outcome from when only four waters were used. In fact, the 16-water simulations behave much like those of water cluster anions, in which the electron localizes at the cluster surface, showing that PCM is not acceptable for use in minimalist models to describe the behavior of the bulk hydrated electron. For both the 4- and 16-water models, we investigate how the introduction of thermal motions alters the predicted absorption spectrum, vertical detachment energy, and resonance Raman spectrum of the simulated hydrated electron. We also present a set of structural criteria that can be used to numerically determine how cavity-like (or not) a particular hydrated electron model is. All of the results emphasize that the hydrated electron is a statistical object whose properties are inadequately captured using only a small number of explicit waters, and that a proper treatment of thermal fluctuations is critical to understanding the hydrated electron’s chemical and physical behavior.  more » « less
Award ID(s):
1856050
NSF-PAR ID:
10275510
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The journal of physical chemistry
Volume:
124
ISSN:
1520-5207
Page Range / eLocation ID:
9592-603
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The hydrated electron is of interest to both theorists and experimentalists as a paradigm solution-phase quantum system. Although the bulk of the theoretical work studying the hydrated electron is based on mixed quantum/classical (MQC) methods, recent advances in computer power have allowed several attempts to study this object using ab initio methods. The difficulty with employing ab initio methods for this system is that even with relatively inexpensive quantum chemistry methods such as density functional theory (DFT), such calculations are still limited to at most a few tens of water molecules and only a few picoseconds duration, leaving open the question as to whether the calculations are converged with respect to either system size or dynamical fluctuations. Moreover, the ab initio simulations of the hydrated electron that have been published to date have provided only limited analysis. Most works calculate the electron’s vertical detachment energy, which can be compared to experiment, and occasionally the electronic absorption spectrum is also computed. Structural features, such as pair distribution functions, are rare in the literature, with the majority of the structural analysis being simple statements that the electron resides in a cavity, which are often based only on a small number of simulation snapshots. Importantly, there has been no ab initio work examining the temperature-dependent behavior of the hydrated electron, which has not been satisfactorily explained by MQC simulations. In this work, we attempt to remedy this situation by running DFT-based ab initio simulations of the hydrated electron as a function of both box size and temperature. We show that the calculated properties of the hydrated electron are not converged even with simulation sizes up to 128 water molecules and durations of several tens of picoseconds. The simulations show significant changes in the water coordination and solvation structure with box size. Our temperature-dependent simulations predict a red-shift of the absorption spectrum (computed using TD-DFT with an optimally tuned range-separated hybrid functional) with increasing temperature, but the magnitude of the predicted red-shift is larger than that observed experimentally, and the absolute position of the calculated spectra are off by over half an eV. The spectral red-shift at high temperatures is accompanied by both a partial loss of structure of the electron’s central cavity and an increased radius of gyration that pushes electron density onto and beyond the first solvation shell. Overall, although ab initio simulations can provide some insights into the temperature-dependent behavior of the hydrated electron, the simulation sizes and level of quantum chemistry theory that are currently accessible are inadequate for correctly describing the experimental properties of this fascinating object. 
    more » « less
  2. Excess electrons in liquid acetonitrile are of particular interest because they exist in two different forms in equilibrium: they can be present as traditional solvated electrons in a cavity, and they can form some type of solvated molecular anion. Studies of small acetonitrile cluster anions in the gas phase show two isomers with distinct vertical detachment energies, and it is tempting to presume that the two gas-phase cluster anion isomers are precursors of the two excess electron species present in bulk solution. In this paper, we perform DFT-based ab initio molecular dynamics simulations of acetonitrile cluster anions to understand the electronic species that are present and why they have different binding energies. Using a long-range-corrected density functional that was optimally tuned to describe acetonitrile cluster anion structures, we have theoretically explored the chemistry of (CH3CN)n¯ cluster anions with sizes n=5,7 and 10. Since the temperature of the experimental cluster anions is not known, we performed two sets of simulations that investigated how the way in which the cluster anions are prepared affects the excess electron binding motif: one set of simulations simply attached excess electrons to neutral (CH3CN)n clusters, providing little opportunity for the clusters to relax in the presence of the excess electron, while the other set allowed the cluster anions to thermally equilibrate near room temperature. We find that both sets of simulations show three distinct electron binding motifs: electrons can attach to the surface of the cluster (dipole-bound) or be present as either solvated monomer anions, CH3CN¯, or as solvated molecular dimer anions, (CH3CN)2¯. All three species have higher binding energies at larger cluster sizes. Thermal equilibration strongly favors the formation of the valence-bound molecular anions relative to surface-bound excess electrons, and the dimer anion becomes more stable than the monomer anion and surface-bound species as the cluster size increases. The calculated photoelectron spectra from our simulations in which there was poor thermal equilibration are in good agreement with experiment, suggesting assignment of the two experimental cluster anion isomers as the surface-bound electron and the solvated molecular dimer anion. The simulations also suggest that the shoulder seen experimentally on the low-energy isomer's detachment peak is not part of a vibronic progression but instead results from molecular monomer anions. Nowhere in the size range that we explore do we see evidence for a non-valence, cavity-bound interior-solvated electron, indicating that this species is likely only accessible at larger sizes with good thermal equilibration. 
    more » « less
  3. Abstract

    Reliable simulations of molecules in condensed phase require the combination of an accurate quantum mechanical method for the core region, and a realistic model to describe the interaction with the environment. Additionally, this combination should not significantly increase the computational cost of the calculation compared to the corresponding in vacuo case. In this review, we describe the combination of methods based on coupled cluster (CC) theory with polarizable classical models for the environment. We use the polarizable continuum model (PCM) of solvation to discuss the equations, but we also show how the same theoretical framework can be extended to polarizable force fields. The theory is developed within the perturbation theory energy and singles‐T density (PTES) scheme, where the environmental response is computed with the CC single excitation amplitudes as an approximation for the full one‐particle reduced density. The CC‐PTES combination provides the best compromise between accuracy and computational effort for CC calculations in condensed phase, because it includes the response of the environment to the correlation density at the same computational cost of in vacuo CC. We discuss a number of numerical applications for ground and excited state properties, based on the implementation of CC‐PTES with single and double excitations (CCSD‐PTES), which show the reliability and computational efficiency of the method in reproducing experimental or full‐CC data.

    This article is characterized under:

    Electronic Structure Theory > Ab Initio Electronic Structure Methods

    Electronic Structure Theory > Combined QM/MM Methods

    Software > Quantum Chemistry

     
    more » « less
  4. Abstract Nuclear magnetic resonance relaxometry represents a powerful tool for extracting dynamic information. Yet, obtaining links to molecular motion is challenging for many ions that relax through the quadrupolar mechanism, which is mediated by electric field gradient fluctuations and lacks a detailed microscopic description. For sodium ions in aqueous electrolytes, we combine ab initio calculations to account for electron cloud effects with classical molecular dynamics to sample long-time fluctuations, and obtain relaxation rates in good agreement with experiments over broad concentration and temperature ranges. We demonstrate that quadrupolar nuclear relaxation is sensitive to subpicosecond dynamics not captured by previous models based on water reorientation or cluster rotation. While ions affect the overall water retardation, experimental trends are mainly explained by dynamics in the first two solvation shells of sodium, which contain mostly water. This work thus paves the way to the quantitative understanding of quadrupolar relaxation in electrolyte and bioelectrolyte systems. 
    more » « less
  5. Computational simulation of biomolecules can provide important insights into protein design, protein-ligand binding interactions, and ab initio biomolecular folding, among other applications. Accurate treatment of the solvent environment is essential in such applications, but the use of explicit solvents can add considerable cost. Implicit treatment of solvent effects using a dielectric continuum model is an attractive alternative to explicit solvation since it is able to describe solvation effects without the inclusion of solvent degrees of freedom. Previously, we described the development and parameterization of implicit solvent models for small molecules. Here, we extend the parameterization of the generalized Kirkwood (GK) implicit solvent model for use with biomolecules described by the AMOEBA force field via the addition of corrections to the calculation of effective radii that account for interstitial spaces that arise within biomolecules. These include element-specific pairwise descreening scale factors, a short-range neck contribution to describe the solvent-excluded space between pairs of nearby atoms, and finally tanh-based rescaling of the overall descreening integral. We then apply the AMOEBA/GK implicit solvent to a set of ten proteins and achieve an average coordinate root mean square deviation for the experimental structures of 2.0 Å across 500 ns simulations. Overall, the continued development of implicit solvent models will help facilitate the simulation of biomolecules on mechanistically relevant timescales. 
    more » « less