skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2022446

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 15, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Linearity testing has been a focal problem in property testing of functions. We combine different known techniques and observations about Linearity testing in order to resolve two recent versions of this task. First, we focus on the online-manipulation-resilient model introduced by Kalemaj, Raskhodnikova and Varma (Theory of Computing 2023). In this model, up to t data entries are adversarially manipulated after each query is answered. Ben-Eliezer, Kelman, Meir, and Raskhodnikova (ITCS 2024) showed an asymptotically optimal Linearity tester that is resilient to t manipulations per query, but fails if t is too large. We simplify their analysis for the regime of small t, and for larger values of t we instead use sample-based testers, as defined by Goldreich and Ron (ACM Transactions on Computation Theory 2016). A key observation is that sample-based testing is resilient to online manipulations but still achieves optimal query complexity for Linearity when t is large. We complement our result by showing that when t is very large any reasonable property, and in particular Linearity, cannot be tested at all. Second, we consider Linearity over the reals with proximity parameter ε. Fleming and Yoshida (ITCS 2020) gave a tester using O (1/ε · log (1/ε)) queries. We simplify their algorithms and modify the analysis accordingly, showing an optimal tester that only uses O (1/ε) queries. This modification works for the low-degree testers presented in Arora, Bhattacharyya, Fleming, Kelman, and Yoshida (SODA 2023) as well, resulting in optimal testers for degree-d polynomials, for any constant d. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Meka, Raghu (Ed.)
    We study property testing with incomplete or noisy inputs. The models we consider allow for adversarial manipulation of the input, but differ in whether the manipulation can be done only offline, i.e., before the execution of the algorithm, or online, i.e., as the algorithm runs. The manipulations by an adversary can come in the form of erasures or corruptions. We compare the query complexity and the randomness complexity of property testing in the offline and online models. Kalemaj, Raskhodnikova, and Varma (Theory Comput. `23) provide properties that can be tested with a small number of queries with offline erasures, but cannot be tested at all with online erasures. We demonstrate that the two models are incomparable in terms of query complexity: we construct properties that can be tested with a constant number of queries in the online corruption model, but require querying a significant fraction of the input in the offline erasure model. We also construct properties that exhibit a strong separation between the randomness complexity of testing in the presence of offline and online adversaries: testing these properties in the online model requires exponentially more random bits than in the offline model, even when they are tested with nearly the same number of queries in both models. Our randomness separation relies on a novel reduction from randomness-efficient testers in the adversarial online model to query-efficient testers in the standard model. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)
    We study the problem of robust multivariate polynomial regression: let p: ℝⁿ → ℝ be an unknown n-variate polynomial of degree at most d in each variable. We are given as input a set of random samples (𝐱_i,y_i) ∈ [-1,1]ⁿ × ℝ that are noisy versions of (𝐱_i,p(𝐱_i)). More precisely, each 𝐱_i is sampled independently from some distribution χ on [-1,1]ⁿ, and for each i independently, y_i is arbitrary (i.e., an outlier) with probability at most ρ < 1/2, and otherwise satisfies |y_i-p(𝐱_i)| ≤ σ. The goal is to output a polynomial p̂, of degree at most d in each variable, within an 𝓁_∞-distance of at most O(σ) from p. Kane, Karmalkar, and Price [FOCS'17] solved this problem for n = 1. We generalize their results to the n-variate setting, showing an algorithm that achieves a sample complexity of O_n(dⁿlog d), where the hidden constant depends on n, if χ is the n-dimensional Chebyshev distribution. The sample complexity is O_n(d^{2n}log d), if the samples are drawn from the uniform distribution instead. The approximation error is guaranteed to be at most O(σ), and the run-time depends on log(1/σ). In the setting where each 𝐱_i and y_i are known up to N bits of precision, the run-time’s dependence on N is linear. We also show that our sample complexities are optimal in terms of dⁿ. Furthermore, we show that it is possible to have the run-time be independent of 1/σ, at the cost of a higher sample complexity. 
    more » « less
  6. We introduce a technique for tuning the learning rate scale factor of any base optimization algorithm and schedule automatically, which we call Mechanic. Our method provides a practical realization of recent theoretical reductions for accomplishing a similar goal in online convex optimization. We rigorously evaluate Mechanic on a range of large scale deep learning tasks with varying batch sizes, schedules, and base optimization algorithms. These experiments demonstrate that depending on the problem, Mechanic either comes very close to, matches or even improves upon manual tuning of learning rates. 
    more » « less
  7. We present new algorithms for optimizing non-smooth, non-convex stochastic objectives based on a novel analysis technique. This improves the current best-known complexity for finding a (δ,ϵ)-stationary point from O(ϵ^(-4),δ^(-1)) stochastic gradient queries to O(ϵ^(-3),δ^(-1)), which we also show to be optimal. Our primary technique is a reduction from non-smooth non-convex optimization to online learning, after which our results follow from standard regret bounds in online learning. For deterministic and second-order smooth objectives, applying more advanced optimistic online learning techniques enables a new complexity of O(ϵ^(-1.5),δ^(-0.5)). Our techniques also recover all optimal or best-known results for finding ϵ stationary points of smooth or second-order smooth objectives in both stochastic and deterministic settings. 
    more » « less
  8. We consider the problem of estimating the mean of a sequence of random elements f (θ, X_1) , . . . , f (θ, X_n) where f is a fixed scalar function, S = (X_1, . . . , X_n) are independent random variables, and θ is a possibly S-dependent parameter. An example of such a problem would be to estimate the generalization error of a neural network trained on n examples where f is a loss function. Classically, this problem is approached through concentration inequalities holding uniformly over compact parameter sets of functions f , for example as in Rademacher or VC type analysis. However, in many problems, such inequalities often yield numerically vacuous estimates. Recently, the PAC-Bayes framework has been proposed as a better alternative for this class of problems for its ability to often give numerically non-vacuous bounds. In this paper, we show that we can do even better: we show how to refine the proof strategy of the PAC-Bayes bounds and achieve even tighter guarantees. Our approach is based on the coin-betting framework that derives the numerically tightest known time-uniform concentration inequalities from the regret guarantees of online gambling algorithms. In particular, we derive the first PAC-Bayes concentration inequality based on the coin-betting approach that holds simultaneously for all sample sizes. We demonstrate its tightness showing that by relaxing it we obtain a number of previous results in a closed form including Bernoulli-KL and empirical Bernstein inequalities. Finally, we propose an efficient algorithm to numerically calculate confidence sequences from our bound, which often generates nonvacuous confidence bounds even with one sample, unlike the state-of-the-art PAC-Bayes bounds. 
    more » « less