skip to main content


Title: Convolutional Beamspace and Sparse Signal Recovery for Linear Arrays
The convolutional beamspace (CBS) method for DOA estimation using dictionary-based sparse signal recovery is introduced. Beamspace methods enjoy lower computational complexity, increased parallelism of subband processing, and improved DOA resolution. But unlike classical beamspace methods, CBS allows root-MUSIC and ESPRIT to be performed directly for ULAs without additional preparation since the Vandermonde structure for ULAs are preserved in the CBS output. Due to the same reason, it is shown in this paper that sparse signal representation problems can also be directly formulated on the CBS output. Significant reduction in computational complexity and higher probability of resolution are obtained by using CBS. It is also shown how the regularization parameter involved in the method should be chosen  more » « less
Award ID(s):
1712633
NSF-PAR ID:
10275636
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proc. Asil. Conf. Sig., Sys., and Comp
Page Range / eLocation ID:
929 to 933
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Anew beamspace method for array processing, called convolutional beamspace (CBS), is proposed. It enjoys the advantages of classical beamspace such as lower computational complexity, increased parallelism of subband processing, and improved resolution threshold for DOA estimation. But unlike classical beamspace methods, it allows root-MUSIC and ESPRIT to be performed directly for ULAs without additional preparation since the Vandermonde structure and the shift-invariance are preserved under the CBS transformation. The method produces more accurate DOA estimates than classical beamspace, and for correlated sources, better estimates than element-space. The method also generalizes to sparse arrays by effective use of the difference coarray. For this, the autocorrelation evaluated on theULAportion of the coarray is filtered appropriately to produce the coarray CBS. It is also shown how CBS can be used in the context of sparse signal representation with dictionaries, where the dictionaries have columns that resemble steering vectors at a dense grid of frequencies. Again CBS processing with dictionaries offers better resolution, accuracy, and lower computational complexity. As only the filter responses at discrete frequencies on the dictionary grid are relevant, the problem of designing discrete-frequency FIR filters is also addressed. 
    more » « less
  2. null (Ed.)
    A new type of beamspace for array processing is introduced called convolutional beamspace. It enjoys the advantages of traditional beamspace such as lower computational complexity, increased parallelism of subband processing, and improved resolution threshold for DOA estimation. But unlike traditional beamspace methods, it allows root-MUSIC and ESPRIT to be performed directly for ULAs without any overhead of preparation, as the Vandermonde structure and the shift-invariance are preserved under the transformation. The method produces more accurate DOA estimates than traditional beamspace methods, and for correlated sources it produces better estimates than element-space methods. 
    more » « less
  3. null (Ed.)
    A new method to design the filter for convolutional beamspace (CBS), called Capon-CBS, is proposed. The idea is to design the filter to be a sliding Capon beamformer. Such design takes input statistics into account, so it can do a better job of suppressing the sources that fall in the stopband. Capon-CBS can offer higher probability of resolution and smaller mean square error for DOA estimation, as demonstrated in the simulations. Moreover, like traditional CBS, Capon-CBS also has the advantage of low computational complexity 
    more » « less
  4. null (Ed.)
    Beamspace processing is an emerging technique to reduce baseband complexity in massive multiuser (MU) multipleinput multiple-output (MIMO) communication systems operating at millimeter-wave (mmWave) and terahertz frequencies. The high directionality of wave propagation at such high frequencies ensures that only a small number of transmission paths exist between user equipments and basestation (BS). In order to resolve the sparse nature of wave propagation, beamspace processing traditionally computes a spatial discrete Fourier transform (DFT) across a uniform linear antenna array at the BS where each DFT output is associated with a specific beam. In this paper, we study optimality conditions of the DFT for sparsity-based beamspace processing with idealistic mmWave channel models and realistic channels. To this end, we propose two algorithms that learn unitary beamspace transforms using an l4-norm-based sparsity measure, and we investigate their optimality theoretically and via simulations. 
    more » « less
  5. Abstract

    Measured intensity in high-energy monochromatic X-ray diffraction (HEXD) experiments provides information regarding the microstructure of the crystalline material under study. The location of intensity on an areal detector is determined by the lattice spacing and orientation of crystals so that changes in theheterogeneityof these quantities are reflected in the spreading of diffraction peaks over time. High temporal resolution of such dynamics can now be experimentally observed using technologies such as the mixed-mode pixel array detector (MM-PAD) which facilitates in situ dynamic HEXD experiments to study plasticity and its underlying mechanisms. In this paper, we define and demonstrate a feature computed directly from such diffraction time series data quantifying signal spread in a manner that is correlated with plastic deformation of the sample. A distinguishing characteristic of the analysis is the capability to describe the evolution from the distinct diffraction peaks of an undeformed alloy sample through to the non-uniform Debye–Scherrer rings developed upon significant plastic deformation. We build on our previous work modeling data using an overcomplete dictionary by treating temporal measurements jointly to improve signal spread recovery. We demonstrate our approach in simulations and on experimental HEXD measurements captured using the MM-PAD. Our method for characterizing the temporal evolution of signal spread is shown to provide an informative means of data analysis that adds to the capabilities of existing methods. Our work draws on ideas from convolutional sparse coding and requires solving a coupled convex optimization problem based on the alternating direction method of multipliers.

     
    more » « less