Emergency Response Management (ERM) is a critical problem faced by communities across the globe. Despite this, it is common for ERM systems to follow myopic decision policies in the real world. Principled approaches to aid ERM decision-making under uncertainty have been explored but have failed to be accepted into real systems. We identify a key issue impeding their adoption — algorithmic approaches to emergency response focus on reactive, post-incident dispatching actions, i.e. optimally dispatching a responder after incidents occur. However, the critical nature of emergency response dictates that when an incident occurs, first responders always dispatch the closest available responder to the incident. We argue that the crucial period of planning for ERM systems is not post-incident, but between incidents. This is not a trivial planning problem — a major challenge with dynamically balancing the spatial distribution of responders is the complexity of the problem. An orthogonal problem in ERM systems is planning under limited communication, which is particularly important in disaster scenarios that affect communication networks. We address both problems by proposing two partially decentralized multi-agent planning algorithms that utilize heuristics and exploit the structure of the dispatch problem. We evaluate our proposed approach using real-world data, and find that in several contexts, dynamic re-balancing the spatial distribution of emergency responders reduces both the average response time as well as its variance. 
                        more » 
                        « less   
                    
                            
                            Incident management and analysis dashboard for fire departments: ICCPS demo
                        
                    
    
            This work presents a dashboard tool that helps emergency responders analyze and manage spatial-temporal incidents like crime and traffic accidents. It uses state-of-the-art statistical models to learn incident probabilities based on factors such as prior incidents, time and weather. The dashboard can then present historic and predicted incident distributions. It also allows responders to analyze how moving or adding depots (stations for emergency responders) affects average response times, and can make dispatching recommendations based on heuristics. Broadly, it is a one-stop tool that helps responders visualize historical data as well as plan for and respond to incidents. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10275733
- Date Published:
- Journal Name:
- Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems
- Page Range / eLocation ID:
- 336 to 337
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Emergency Response Management (ERM) is a critical problem faced by communities across the globe. Despite this, it is common for ERM systems to follow myopic decision policies in the real world. Principled approaches to aid ERM decision-making under uncertainty have been explored but have failed to be accepted into real systems. We identify a key issue impeding their adoption --- algorithmic approaches to emergency response focus on reactive, post-incident dispatching actions, i.e. optimally dispatching a responder after incidents occur. However, the critical nature of emergency response dictates that when an incident occurs, first responders always dispatch the closest available responder to the incident. We argue that the crucial period of planning for ERM systems is not post-incident, but between incidents. This is not a trivial planning problem --- a major challenge with dynamically balancing the spatial distribution of responders is the complexity of the problem. An orthogonal problem in ERM systems is planning under limited communication, which is particularly important in disaster scenarios that affect communication networks. We address both problems by proposing two partially decentralized multi-agent planning algorithms that utilize heuristics and exploit the structure of the dispatch problem. We evaluate our proposed approach using real-world data, and find that in several contexts, dynamic re-balancing the spatial distribution of emergency responders reduces both the average response time as well as its variance.more » « less
- 
            Designing effective emergency response management (ERM) systems to respond to incidents such as road accidents is a major problem faced by communities. In addition to responding to frequent incidents each day (about 240 million emergency medical services calls and over 5 million road accidents in the US each year), these systems also support response during natural hazards. Recently, there has been a consistent interest in building decision support and optimization tools that can help emergency responders provide more efficient and effective response. This includes a number of principled subsystems that implement early incident detection, incident likelihood forecasting and strategic resource allocation and dispatch policies. In this paper, we highlight the key challenges and provide an overview of the approach developed by our team in collaboration with our community partners.more » « less
- 
            The problem of dispatching emergency responders to service traffic accidents, fire, distress calls and crimes plagues urban areas across the globe. While such problems have been extensively looked at, most approaches are offline. Such methodologies fail to capture the dynamically changing environments under which critical emergency response occurs, and therefore, fail to be implemented in practice. Any holistic approach towards creating a pipeline for effective emergency response must also look at other challenges that it subsumes - predicting when and where incidents happen and understanding the changing environmental dynamics. We describe a system that collectively deals with all these problems in an online manner, meaning that the models get updated with streaming data sources. We highlight why such an approach is crucial to the effectiveness of emergency response, and present an algorithmic framework that can compute promising actions for a given decision-theoretic model for responder dispatch. We argue that carefully crafted heuristic measures can balance the trade-off between computational time and the quality of solutions achieved and highlight why such an approach is more scalable and tractable than traditional approaches. We also present an online mechanism for incident prediction, as well as an approach based on recurrent neural networks for learning and predicting environmental features that affect responder dispatch. We compare our methodology with prior state-of-the-art and existing dispatch strategies in the field, which show that our approach results in a reduction in response time of responders with a drastic reduction in computational time.more » « less
- 
            null (Ed.)The number of emergencies have increased over the years with the growth in urbanization. This pattern has overwhelmed the emergency services with limited resources and demands the optimization of response processes. It is partly due to traditional ‘reactive’ approach of emergency services to collect data about incidents, where a source initiates a call to the emergency number (e.g., 911 in U.S.), delaying and limiting the potentially optimal response. Crowdsourcing platforms such as Waze provides an opportunity to develop a rapid, ‘proactive’ approach to collect data about incidents through crowd-generated observational reports. However, the reliability of reporting sources and spatio-temporal uncertainty of the reported incidents challenge the design of such a proactive approach. Thus, this paper presents a novel method for emergency incident detection using noisy crowdsourced Waze data. We propose a principled computational framework based on Bayesian theory to model the uncertainty in the reliability of crowd-generated reports and their integration across space and time to detect incidents. Extensive experiments using data collected from Waze and the official reported incidents in Nashville, Tenessee in the U.S. show our method can outperform strong baselines for both Fl-score and AUC. The application of this work provides an extensible framework to incorporate different noisy data sources for proactive incident detection to improve and optimize emergency response operations in our communities.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    