skip to main content


Title: An online decision-theoretic pipeline for responder dispatch
The problem of dispatching emergency responders to service traffic accidents, fire, distress calls and crimes plagues urban areas across the globe. While such problems have been extensively looked at, most approaches are offline. Such methodologies fail to capture the dynamically changing environments under which critical emergency response occurs, and therefore, fail to be implemented in practice. Any holistic approach towards creating a pipeline for effective emergency response must also look at other challenges that it subsumes - predicting when and where incidents happen and understanding the changing environmental dynamics. We describe a system that collectively deals with all these problems in an online manner, meaning that the models get updated with streaming data sources. We highlight why such an approach is crucial to the effectiveness of emergency response, and present an algorithmic framework that can compute promising actions for a given decision-theoretic model for responder dispatch. We argue that carefully crafted heuristic measures can balance the trade-off between computational time and the quality of solutions achieved and highlight why such an approach is more scalable and tractable than traditional approaches. We also present an online mechanism for incident prediction, as well as an approach based on recurrent neural networks for learning and predicting environmental features that affect responder dispatch. We compare our methodology with prior state-of-the-art and existing dispatch strategies in the field, which show that our approach results in a reduction in response time of responders with a drastic reduction in computational time.  more » « less
Award ID(s):
1814958 1640624
NSF-PAR ID:
10098756
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems
Page Range / eLocation ID:
185 to 196
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The problem of dispatching emergency responders to service traffic accidents, fire, distress calls and crimes plagues urban areas across the globe. While such problems have been extensively looked at, most approaches are offline. Such methodologies fail to capture the dynamically changing environments under which critical emergency response occurs, and therefore, fail to be implemented in practice. Any holistic approach towards creating a pipeline for effective emergency response must also look at other challenges that it subsumes - predicting when and where incidents happen and understanding the changing environmental dynamics. We describe a system that collectively deals with all these problems in an online manner, meaning that the models get updated with streaming data sources. We highlight why such an approach is crucial to the effectiveness of emergency response, and present an algorithmic framework that can compute promising actions for a given decision-theoretic model for responder dispatch. We argue that carefully crafted heuristic measures can balance the trade-off between computational time and the quality of solutions achieved and highlight why such an approach is more scalable and tractable than traditional approaches. We also present an online mechanism for incident prediction, as well as an approach based on recurrent neural networks for learning and predicting environmental features that affect responder dispatch. We compare our methodology with prior state-of-the-art and existing dispatch strategies in the field, which show that our approach results in a reduction in response time with a drastic reduction in computational time. 
    more » « less
  2. Emergency Response Management (ERM) is a critical problem faced by communities across the globe. Despite this, it is common for ERM systems to follow myopic decision policies in the real world. Principled approaches to aid ERM decision-making under uncertainty have been explored but have failed to be accepted into real systems. We identify a key issue impeding their adoption — algorithmic approaches to emergency response focus on reactive, post-incident dispatching actions, i.e. optimally dispatching a responder after incidents occur. However, the critical nature of emergency response dictates that when an incident occurs, first responders always dispatch the closest available responder to the incident. We argue that the crucial period of planning for ERM systems is not post-incident, but between incidents. This is not a trivial planning problem — a major challenge with dynamically balancing the spatial distribution of responders is the complexity of the problem. An orthogonal problem in ERM systems is planning under limited communication, which is particularly important in disaster scenarios that affect communication networks. We address both problems by proposing two partially decentralized multi-agent planning algorithms that utilize heuristics and exploit the structure of the dispatch problem. We evaluate our proposed approach using real-world data, and find that in several contexts, dynamic re-balancing the spatial distribution of emergency responders reduces both the average response time as well as its variance. 
    more » « less
  3. Emergency Response Management (ERM) is a critical problem faced by communities across the globe. Despite this, it is common for ERM systems to follow myopic decision policies in the real world. Principled approaches to aid ERM decision-making under uncertainty have been explored but have failed to be accepted into real systems. We identify a key issue impeding their adoption --- algorithmic approaches to emergency response focus on reactive, post-incident dispatching actions, i.e. optimally dispatching a responder after incidents occur. However, the critical nature of emergency response dictates that when an incident occurs, first responders always dispatch the closest available responder to the incident. We argue that the crucial period of planning for ERM systems is not post-incident, but between incidents. This is not a trivial planning problem --- a major challenge with dynamically balancing the spatial distribution of responders is the complexity of the problem. An orthogonal problem in ERM systems is planning under limited communication, which is particularly important in disaster scenarios that affect communication networks. We address both problems by proposing two partially decentralized multi-agent planning algorithms that utilize heuristics and exploit the structure of the dispatch problem. We evaluate our proposed approach using real-world data, and find that in several contexts, dynamic re-balancing the spatial distribution of emergency responders reduces both the average response time as well as its variance. 
    more » « less
  4. null (Ed.)
    Principled decision making in emergency response management necessitates the use of statistical models that predict the spatial-temporal likelihood of incident occurrence. These statistical models are then used for proactive stationing which allocates first responders across the spatial area in order to reduce overall response time. Traditional methods that simply aggregate past incidents over space and time fail to make useful short-term predictions when the spatial region is large and focused on fine-grained spatial entities like interstate highway networks. This is partially due to the sparsity of incidents with respect to the area in consideration. Further, accidents are affected by several covariates, and collecting, cleaning, and managing multiple streams of data from various sources is challenging for large spatial areas. In this paper, we highlight how this problem is being solved for the state of Tennessee, a state in the USA with a total area of over 100,000 sq. km. Our pipeline, based on a combination of synthetic resampling, non-spatial clustering, and learning from data can efficiently forecast the spatial and temporal dynamics of accident occurrence, even under sparse conditions. In the paper, we describe our pipeline that uses data related to roadway geometry, weather, historical accidents, and real-time traffic congestion to aid accident forecasting. To understand how our forecasting model can affect allocation and dispatch, we improve upon a classical resource allocation approach. Experimental results show that our approach can significantly reduce response times in the field in comparison with current approaches followed by first responders. 
    more » « less
  5. null (Ed.)
    During disasters, it is critical to deliver emergency information to appropriate first responders. Name-based information delivery provides efficient, timely dissemination of relevant content to first responder teams assigned to different incident response roles. People increasingly depend on social media for communicating vital information, using free-form text. Thus, a method that delivers these social media posts to the right first responders can significantly improve outcomes. In this paper, we propose FLARE, a framework using 'Social Media Engines' (SMEs) to map social media posts (SMPs), such as tweets, to the right names. SMEs perform natural language processing-based classification and exploit several machine learning capabilities, in an online real-time manner. To reduce the manual labeling effort required for learning during the disaster, we leverage active learning, complemented by dispatchers with specific domain-knowledge performing limited labeling. We also leverage federated learning across various public-safety departments with specialized knowledge to handle notifications related to their roles in a cooperative manner. We implement three different classifiers: for incident relevance, organization, and fine-grained role prediction. Each class is associated with a specific subset of the namespace graph. The novelty of our system is the integration of the namespace with federated active learning and inference procedures to identify and deliver vital SMPs to the right first responders in a distributed multi-organization environment, in real-time. Our experiments using real-world data, including tweets generated by citizens during the wildfires in California in 2018, show our approach outperforming both a simple keyword-based classification and several existing NLP-based classification techniques. 
    more » « less