Public-transit systems face a number of operational challenges: (a) changing ridership patterns requiring optimization of fixed line services, (b) optimizing vehicle-to-trip assignments to reduce maintenance and operation codes, and (c) ensuring equitable and fair coverage to areas with low ridership. Optimizing these objectives presents a hard computational problem due to the size and complexity of the decision space. State-of-the-art methods formulate these problems as variants of the vehicle routing problem and use data-driven heuristics for optimizing the procedures. However, the evaluation and training of these algorithms require large datasets that provide realistic coverage of various operational uncertainties. This paper presents a dynamic simulation platform, called Transit-Gym, that can bridge this gap by providing the ability to simulate scenarios, focusing on variation of demand models, variations of route networks, and variations of vehicle-to-trip assignments. The central contribution of this work is a domain-specific language and associated experimentation tool-chain and infrastructure to enable subject-matter experts to intuitively specify, simulate, and analyze large-scale transit scenarios and their parametric variations. Of particular significance is an integrated microscopic energy consumption model that also helps to analyze the energy cost of various transit decisions made by the transportation agency of a city.
more »
« less
TRANSIT-GYM: A Simulation and Evaluation Engine for Analysis of Bus Transit Systems
Public-transit systems face a number of operational challenges: (a) changing ridership patterns requiring optimization of fixed line services, (b) optimizing vehicle-to-trip assignments to reduce maintenance and operation codes, and (c) ensuring equitable and fair coverage to areas with low ridership. Optimizing these objectives presents a hard computational problem due to the size and complexity of the decision space. State-of-the-art methods formulate these problems as variants of the vehicle routing problem and use data-driven heuristics for optimizing the procedures. However, the evaluation and training of these algorithms require large datasets that provide realistic coverage of various operational uncertainties. This paper presents a dynamic simulation platform, called Transit-Gym, that can bridge this gap by providing the ability to simulate scenarios, focusing on variation of demand models, variations of route networks, and variations of vehicle-to-trip assignments. The central contribution of this work is a domain-specific language and associated experimentation tool-chain and infrastructure to enable subject-matter experts to intuitively specify, simulate, and analyze large-scale transit scenarios and their parametric variations. Of particular significance is an integrated microscopic energy consumption model that also helps to analyze the energy cost of various transit decisions made by the transportation agency of a city.
more »
« less
- Award ID(s):
- 1952011
- NSF-PAR ID:
- 10275742
- Date Published:
- Journal Name:
- IEEE SmartComp 2021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Public-transit systems face a number of operational challenges: (a) changing ridership patterns requiring optimization of fixed line services, (b) optimizing vehicle-to-trip assignments to reduce maintenance and operation codes, and (c) ensuring equitable and fair coverage to areas with low ridership. Optimizing these objectives presents a hard computational problem due to the size and complexity of the decision space. State-of-the-art methods formulate these problems as variants of the vehicle routing problem and use data-driven heuristics for optimizing the procedures. However, the evaluation and training of these algorithms require large datasets that provide realistic coverage of various operational uncertainties. This paper presents a dynamic simulation platform, called \textsc{Transit-Gym}, that can bridge this gap by providing the ability to simulate scenarios, focusing on variation of demand models, variations of route networks, and variations of vehicle-to-trip assignments. The central contribution of this work is a domain-specific language and associated experimentation tool-chain and infrastructure to enable subject-matter experts to intuitively specify, simulate, and analyze large-scale transit scenarios and their parametric variations. Of particular significance is an integrated microscopic energy consumption model that also helps to analyze the energy cost of various transit decisions made by the transportation agency of a city.more » « less
-
Public transit agencies struggle to maintain transit accessibility with reduced resources, unreliable ridership data, reduced vehicle capacities due to social distancing, and reduced services due to driver unavailability. In collaboration with transit agencies from two large metropolitan areas in the USA, we are designing novel approaches for addressing the afore-mentioned challenges by collecting accurate real-time ridership data, providing guidance to commuters, and performing operational optimization for public transit. We estimate rider-ship data using historical automated passenger counting data, conditional on a set of relevant determinants. Accurate ridership forecasting is essential to optimize the public transit schedule, which is necessary to improve current fixed lines with on-demand transit. Also, passenger crowding has been a problem for public transportation since it deteriorates passengers’ wellbeing and satisfaction. During the COVID-19 pandemic, passenger crowding has gained importance since it represents a risk for social distancing violations. Therefore, we are creating optimization models to ensure that social distancing norms can be adequately followed while ensuring that the total demand for transit is met. We will then use accurate forecasts for operational optimization that includes (a) proactive fixed-line schedule optimization based on predicted demand, (b) dispatch of on-demand micro-transit, prioritizing at-risk populations, and (c) allocation of vehicles to transit and cargo trips, considering exigent vehicle maintenance requirements (i.e., disinfection). Finally, this paper presents some initial results from our project regarding the estimation of ridership in public transit.more » « less
-
null (Ed.)Public transit agencies struggle to maintain transit accessibility with reduced resources, unreliable ridership data, reduced vehicle capacities due to social distancing, and reduced services due to driver unavailability. In collaboration with transit agencies from two large metropolitan areas in the USA, we are designing novel approaches for addressing the afore-mentioned challenges by collecting accurate real-time ridership data, providing guidance to commuters, and performing operational optimization for public transit. We estimate rider-ship data using historical automated passenger counting data, conditional on a set of relevant determinants. Accurate ridership forecasting is essential to optimize the public transit schedule, which is necessary to improve current fixed lines with on-demand transit. Also, passenger crowding has been a problem for public transportation since it deteriorates passengers’ wellbeing and satisfaction. During the COVID-19 pandemic, passenger crowding has gained importance since it represents a risk for social distancing violations. Therefore, we are creating optimization models to ensure that social distancing norms can be adequately followed while ensuring that the total demand for transit is met. We will then use accurate forecasts for operational optimization that includes \textit(a) proactive fixed-line schedule optimization based on predicted demand, \textit(b) dispatch of on-demand micro-transit, prioritizing at-risk populations, and \textit(c) allocation of vehicles to transit and cargo trips, considering exigent vehicle maintenance requirements (\textiti.e., disinfection). Finally, this paper presents some initial results from our project regarding the estimation of ridership in public transit.more » « less
-
COVID-19 has radically transformed urban travel behavior throughout the world. Agencies have had to provide adequate service while navigating a rapidly changing environment with reduced revenue. As COVID-19-related restrictions are lifted, transit agencies are concerned about their ability to adapt to changes in ridership behavior and public transit usage. To aid their becoming more adaptive to sudden or persistent shifts in ridership, we addressed three questions: To what degree has COVID-19 affected fixed-line public transit ridership and what is the relationship between reduced demand and -vehicle trips? How has COVID-19 changed ridership patterns and are they expected to persist after restrictions are lifted? Are there disparities in ridership changes across socioeconomic groups and mobility-impaired riders? Focusing on Nashville and Chattanooga, TN, ridership demand and vehicle trips were compared with anonymized mobile location data to study the relationship between mobility patterns and transit usage. Correlation analysis and multiple linear regression were used to investigate the relationship between socioeconomic indicators and changes in transit ridership, and an analysis of changes in paratransit demand before and during COVID-19. Ridership initially dropped by 66% and 65% over the first month of the pandemic for Nashville and Chattanooga, respectively. Cellular mobility patterns in Chattanooga indicated that foot traffic recovered to a greater degree than transit ridership between mid-April and the last week in June, 2020. Education-level had a statistically significant impact on changes in fixed-line bus transit, and the distribution of changes in demand for paratransit services were similar to those of fixed-line bus transit.more » « less