Geographic datasets are usually accompanied by spatial non-stationarity – a phenomenon that the relationship between features varies across space. Naturally, nonstationarity can be interpreted as the underlying rule that decides how data are generated and alters over space. Therefore, traditional machine learning algorithms are not suitable for handling non-stationary geographic datasets, as they only render a single global model. To solve this problem, researchers often adopt the multiple-local-model approach, which uses different models to account for different sub-regions of space. This approach has been proven efficient but not optimal, as it is inherently difficult to decide the size of subregions. Additionally, the fact that local models are only trained on a subset of data also limits their potential. This paper proposes an entirely different strategy that interprets nonstationarity as a lack of data and addresses it by introducing latent variables to the original dataset. Backpropagation is then used to find the best values for these latent variables. Experiments show that this method is at least as efficient as multiple-local-model-based approaches and has even greater potential.
more »
« less
Geographic Boosting Tree: Modeling Non-Stationary Spatial Data
Non-stationarity is often observed in Geographic datasets. One way to explain non-stationarity is to think of it as a hidden "local knowledge" that varies across space. It is inherently difficult to model such data as models built for one region do not necessarily fit another area as the local knowledge could be different. A solution for this problem is to construct multiple local models at various locations, with each local model accounting for a sub-region within which the data remains relatively stationary. However, this approach is sensitive to the size of data, as the local models are only trained from a subset of observations from a particular region. In this paper, we present a novel approach that addresses this problem by aggregating spatially similar sub-regions into relatively large partitions. Our insight is that although local knowledge shifts over space, it is possible for multiple regions to share the same local knowledge. Data from these regions can be aggregated to train a more accurate model. Experiments show that this method can handle non-stationary and outperforms when the dataset is relatively small.
more »
« less
- PAR ID:
- 10275854
- Date Published:
- Journal Name:
- 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA)
- Page Range / eLocation ID:
- 1205 to 1210
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Recent years saw explosive growth of Human Geography Data, in which spatial non-stationarity is often observed, i.e., relationships between features depend on the location. For these datasets, a single global model cannot accurately describe the relationships among features that vary across space. To address this problem, a viable solution- that has been adopted by many studies-is to create multiple local models instead of a global one, with each local model representing a subregion of the space. However, the challenge with this approach is that the local models are only fitted to nearby observations. For sparsely sampled regions, the data could be too few to generate any high-quality model. This is especially true for Human Geography datasets, as human activities tend to cluster at a few locations. In this paper, we present a modeling method that addresses this problem by letting local models operate within relatively large subregions, where overlapping is allowed. Results from all local models are then fused using an inverse distance weighted approach, to minimize the impact brought by overlapping. Experiments showed that this method handles non-stationary geographic data very Well, even When they are unevenly distributed.more » « less
-
Although recent advances in machine learning have shown its success to learn from independent and identically distributed (IID) data, it is vulnerable to out-of-distribution (OOD) data in an open world. Domain generalization (DG) deals with such an issue and it aims to learn a model from multiple source domains that can be generalized to unseen target domains. Existing studies on DG have largely focused on stationary settings with homogeneous source domains. However, in many applications, domains may evolve along a specific direction (e.g., time, space). Without accounting for such non-stationary patterns, models trained with existing methods may fail to generalize on OOD data. In this paper, we study domain generalization in non-stationary environment. We first examine the impact of environmental non-stationarity on model performance and establish the theoretical upper bounds for the model error at target domains. Then, we propose a novel algorithm based on adaptive invariant representation learning, which leverages the non-stationary pattern to train a model that attains good performance on target domains. Experiments on both synthetic and real data validate the proposed algorithm.more » « less
-
Although recent advances in machine learning have shown its success to learn from independent and identically distributed (IID) data, it is vulnerable to out-of-distribution (OOD) data in an open world. Domain generalization (DG) deals with such an issue and it aims to learn a model from multiple source domains that can be generalized to unseen target domains. Existing studies on DG have largely focused on stationary settings with homogeneous source domains. However, in many applications, domains may evolve along a specific direction (e.g., time, space). Without accounting for such non-stationary patterns, models trained with existing methods may fail to generalize on OOD data. In this paper, we study domain generalization in non-stationary environment. We first examine the impact of environmental non-stationarity on model performance and establish the theoretical upper bounds for the model error at target domains. Then, we propose a novel algorithm based on adaptive invariant representation learning, which leverages the non-stationary pattern to train a model that attains good performance on target domains. Experiments on both synthetic and real data validate the proposed algorithm.more » « less
-
null (Ed.)We consider reinforcement learning (RL) in episodic MDPs with adversarial full-information reward feedback and unknown fixed transition kernels. We propose two model-free policy optimization algorithms, POWER and POWER++, and establish guarantees for their dynamic regret. Compared with the classical notion of static regret, dynamic regret is a stronger notion as it explicitly accounts for the non-stationarity of environments. The dynamic regret attained by the proposed algorithms interpolates between different regimes of non-stationarity, and moreover satisfies a notion of adaptive (near-)optimality, in the sense that it matches the (near-)optimal static regret under slow-changing environments. The dynamic regret bound features two components, one arising from exploration, which deals with the uncertainty of transition kernels, and the other arising from adaptation, which deals with non-stationary environments. Specifically, we show that POWER++ improves over POWER on the second component of the dynamic regret by actively adapting to non-stationarity through prediction. To the best of our knowledge, our work is the first dynamic regret analysis of model-free RL algorithms in non-stationary environments.more » « less
An official website of the United States government

