Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Extensive prior work has provided methods for the optimization of routing based on weights assigned to travel duration, and/or travel cost, and/or the distance traveled. Routing can be in various modalities, such as by car, on foot, by bicycle, via public transit, or by boat. A typical method of routing involves building a graph comprised of street segments, assigning a normalized weighted value to each segment, and then applying the weighted-shorted path algorithm to the graph in order to find the best route. Some users desire that the routing suggestion include consideration pertaining to the scenic-architectural quality of the path. For example, a user may seek a leisure walk via what they might deem as visually attractive architecture. Here, we are proposing a method to quantify such user preferences and scenic quality and to augment the standard routing methods by giving weight to the scenic quality. That is, instead of suggesting merely the time and cost-optimal route, we will find the best route that is tailored towards the user’s scenic quality preferences as an additional criterion to the time and cost. The proposed method uniquely weighs the scenic interest or residential street segments based on the property valuation data.more » « less
- 
            Free, publicly-accessible full text available May 5, 2026
- 
            Free, publicly-accessible full text available March 22, 2026
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Road extraction is a sub-domain of remote sensing applications; it is a subject of extensive and ongoing research. The procedure of automatically extracting roads from satellite imagery encounters significant challenges due to the multi-scale and diverse structures of roads; improvement in this field is needed. Convolutional neural networks (CNNs), especially the DeepLab series known for its proficiency in semantic segmentation due to its efficiency in interpreting multi-scale objects’ features, address some of these challenges caused by the varying nature of roads. The present work proposes the utilization of DeepLabV3+, the latest version of the DeepLab series, by introducing an innovative Dense Depthwise Dilated Separable Spatial Pyramid Pooling (DenseDDSSPP) module and integrating it in the place of the conventional Atrous Spatial Pyramid Pooling (ASPP) module. This modification enhances the extraction of complex road structures from satellite images. This study hypothesizes that the integration of DenseDDSSPP with a CNN backbone network and a Squeeze-and-Excitation block will generate an efficient dense feature map by focusing on relevant features, leading to more precise and accurate road extraction from remote sensing images. The Results Section presents a comparison of our model’s performance against state-of-the-art models, demonstrating better results that highlight the effectiveness and success of the proposed approach.more » « lessFree, publicly-accessible full text available February 1, 2026
- 
            Free, publicly-accessible full text available December 18, 2025
- 
            In the dynamic field of urban planning and the context of unprecedented natural events, such as hurricanes, the fast generation of accurate maps from satellite imagery is paramount. While several studies have utilized Generative Adversarial Networks (GANs) for map generation from satellite images, the present work introduces a new approach by integrating contrastive learning into the GAN framework for enhanced map synthesis. Our methodology distinctively employs positive sampling by aligning similar features (e.g., roads) in both satellite images and their corresponding map outputs, and contrasts this with negative samples for disparate elements. This approach effectively replaces the conventional cyclic process in GANs with a more streamlined, unidirectional procedure, leading to improvements in both the quality of the synthesized maps and computational efficiency. We show the effectiveness of our proposed model, offering an advancement in map generation for remote sensing applications.more » « less
- 
            Generative models have recently gained popularity in remote sensing, offering substantial benefits for interpreting and utilizing satellite imagery across diverse applications such as climate monitoring, urban planning, and wildfire detection. These models are particularly adept at addressing the challenges posed by satellite images, which often exhibit domain variability due to seasonal changes, sensor characteristics, and, especially, variations in spectral bands. Such variability can significantly impact model performance across various tasks. In response to these challenges, our work introduces an adaptive approach that harnesses the capabilities of generative adversarial networks (GANs), augmented with contrastive learning, to generate target domain images that account for multispectral band variations effectively. By maximizing mutual information between corresponding patches and leveraging the power of GANs, our model aims to generate realistic-looking images across different multispectral domains. We present a comparative analysis of our model against other well-established generative models, demonstrating its efficacy in generating high-quality satellite images while effectively managing domain variations inherent to multispectral diversity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
