skip to main content


Search for: All records

Award ID contains: 2018611

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Extensive prior work has provided methods for the optimization of routing based on weights assigned to travel duration, and/or travel cost, and/or the distance traveled. Routing can be in various modalities, such as by car, on foot, by bicycle, via public transit, or by boat. A typical method of routing involves building a graph comprised of street segments, assigning a normalized weighted value to each segment, and then applying the weighted-shorted path algorithm to the graph in order to find the best route. Some users desire that the routing suggestion include consideration pertaining to the scenic-architectural quality of the path. For example, a user may seek a leisure walk via what they might deem as visually attractive architecture. Here, we are proposing a method to quantify such user preferences and scenic quality and to augment the standard routing methods by giving weight to the scenic quality. That is, instead of suggesting merely the time and cost-optimal route, we will find the best route that is tailored towards the user’s scenic quality preferences as an additional criterion to the time and cost. The proposed method uniquely weighs the scenic interest or residential street segments based on the property valuation data.

     
    more » « less
  2. Over the past several years, due to the progression toward data-driven scientific disciplines, the field of Big Data has gained significant importance. These developments pose certain challenges in the area of efficient, effective, and secure management and transmission of digital information. This paper presents and evaluates a novel Distributed Ledger Technology (DLT) system, Fibereum, in a variety of use-cases, including a DLT-based system for Big Data exchange, as well as the fungible and non-fungible exchange of artwork, goods, commodities, and digital currency. Fibereum’s innovations include the application of non-linear data structures and a new concept of Lazy Verification. We demonstrate the benefits of these novel features for DLT system applications’ cost performance and their added resilience towards cyber-attacks via the consideration of several use cases. 
    more » « less
  3. Distributed denial-of-service (DDoS) attack is a malicious cybersecurity attack that has become a global threat. Machine learning (ML) as an advanced technology has been proven to be an effective way against DDoS attacks. Feature selection is a crucial step in ML, and researchers have put endless efforts to mitigate the “Curse of Dimensionality”. Feature selection is also causing problems to ML models, such as a decrease in prediction accuracy. Four supervised classification techniques, namely, Decision Tree (DT), k-Nearest Neighbors (KNN), Logistic Regression (LR), and Random Forest (RF), are tested using mutual information score ranking to study the necessity of feature selection in DDoS detection. 
    more » « less
  4. Over the past few years the need for early-warning maritime threat detection systems has dramatically increased. Our research aims to address this need by tackling three main problems: 1) classify boat activities into three categories: random walk, following, and chasing, 2) real-time classification of boat path trajectories, and 3) designing a novel perception-based framework for activity detection in the maritime context. We propose the implementation of an entropy-based detection algorithm, trained using synthetic data. We assess the viability of the proposed framework based on accuracy and the number of time steps required prior to identification. The synthetic data generated has the potential to spur other research efforts in the field of maritime detection. 
    more » « less
  5. Background: Machine learning is a promising tool for biomarker-based diagnosis of Alzheimer’s disease (AD). Performing multimodal feature selection and studying the interaction between biological and clinical AD can help to improve the performance of the diagnosis models. Objective: This study aims to formulate a feature ranking metric based on the mutual information index to assess the relevance and redundancy of regional biomarkers and improve the AD classification accuracy. Methods: From the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 722 participants with three modalities, including florbetapir-PET, flortaucipir-PET, and MRI, were studied. The multivariate mutual information metric was utilized to capture the redundancy and complementarity of the predictors and develop a feature ranking approach. This was followed by evaluating the capability of single-modal and multimodal biomarkers in predicting the cognitive stage. Results: Although amyloid-β deposition is an earlier event in the disease trajectory, tau PET with feature selection yielded a higher early-stage classification F1-score (65.4%) compared to amyloid-β PET (63.3%) and MRI (63.2%). The SVC multimodal scenario with feature selection improved the F1-score to 70.0% and 71.8% for the early and late-stage, respectively. When age and risk factors were included, the scores improved by 2 to 4%. The Amyloid-Tau-Neurodegeneration [AT(N)] framework helped to interpret the classification results for different biomarker categories. Conclusion: The results underscore the utility of a novel feature selection approach to reduce the dimensionality of multimodal datasets and enhance model performance. The AT(N) biomarker framework can help to explore the misclassified cases by revealing the relationship between neuropathological biomarkers and cognition. 
    more » « less
  6. null (Ed.)
    Non-stationarity is often observed in Geographic datasets. One way to explain non-stationarity is to think of it as a hidden "local knowledge" that varies across space. It is inherently difficult to model such data as models built for one region do not necessarily fit another area as the local knowledge could be different. A solution for this problem is to construct multiple local models at various locations, with each local model accounting for a sub-region within which the data remains relatively stationary. However, this approach is sensitive to the size of data, as the local models are only trained from a subset of observations from a particular region. In this paper, we present a novel approach that addresses this problem by aggregating spatially similar sub-regions into relatively large partitions. Our insight is that although local knowledge shifts over space, it is possible for multiple regions to share the same local knowledge. Data from these regions can be aggregated to train a more accurate model. Experiments show that this method can handle non-stationary and outperforms when the dataset is relatively small. 
    more » « less
  7. null (Ed.)
    This study introduces a new multimodal deep regression method to predict cognitive test score in a 5-year longitudinal study on Alzheimer’s disease (AD). The proposed model takes advantage of multimodal data that includes cerebrospinal fluid (CSF) levels of tau and beta-amyloid, structural measures from magnetic resonance imaging (MRI), functional and metabolic measures from positron emission tomography (PET), and cognitive scores from neuropsychological tests (Cog), all with the aim of achieving highly accurate predictions of future Mini-Mental State Examination (MMSE) test scores up to five years after baseline biomarker collection. A novel data augmentation technique is leveraged to increase the numbers of training samples without relying on synthetic data. With the proposed method, the best and most encompassing regressor is shown to achieve better than state-of-the-art correlations of 85.07%(SD=1.59) for 6 months in the future, 87.39% (SD =1.48) for 12 months, 84.78% (SD=2.66) for 18 months, 85.13% (SD=2.19) for 24 months, 81.15% (SD=5.48) for 30 months, 81.17% (SD=4.44) for 36 months, 79.25% (SD=5.85) for 42 months, 78.98% (SD=5.79) for 48 months, 78.93%(SD=5.76) for 54 months, and 74.96% (SD=7.54) for 60 months. 
    more » « less