The A* algorithm is commonly used to solve NP-hard combinatorial optimization problems. When provided with a completely informed heuristic function, A* can solve such problems in time complexity that is polynomial in the solution cost and branching factor. In light of this fact, we examine a line of recent publications that propose fitting deep neural networks to the completely informed heuristic function. We assert that these works suffer from inherent scalability limitations since --- under the assumption of NP P/poly --- such approaches result in either (a) network sizes that scale super-polynomially in the instance sizes or (b) the accuracy of the fitted deep neural networks scales inversely with the instance sizes. Complementing our theoretical claims, we provide experimental results for three representative NP-hard search problems. The results suggest that fitting deep neural networks to informed heuristic functions requires network sizes that grow quickly with the problem instance size. We conclude by suggesting that the research community should focus on scalable methods for integrating heuristic search with machine learning, as opposed to methods relying on informed heuristic estimation.
more »
« less
Relevant Region Exploration On General Cost-maps For Sampling-Based Motion Planning
Asymptotically optimal sampling-based planners require an intelligent exploration strategy to accelerate convergence. After an initial solution is found, a necessary condition for improvement is to generate new samples in the so-called “Informed Set”. However, Informed Sampling can be ineffective in focusing search if the chosen heuristic fails to provide a good estimate of the solution cost. This work proposes an algorithm to sample the “Relevant Region” instead, which is a subset of the Informed Set. The Relevant Region utilizes cost-to-come information from the planner’s tree structure, reduces dependence on the heuristic, and further focuses the search. Benchmarking tests in uniform and general cost-space settings demonstrate the efficacy of Relevant Region sampling.
more »
« less
- Award ID(s):
- 2008686
- PAR ID:
- 10276013
- Date Published:
- Journal Name:
- International Conference on Intelligent Robots and Systems
- Page Range / eLocation ID:
- 6689 to 6695
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Regionalization techniques group spatial areas into a set of homogeneous regions to analyze and draw conclusions about spatial phenomena. A recent regionalization problem, called MP-regions, groups spatial areas to produce a maximum number of regions by enforcing a user-defined constraint at the regional level. The MP-regions problem is NP-hard. Existing approximate algorithms for MP-regions do not scale for large datasets due to their high computational cost and inherently centralized approaches to process data. This article introduces a parallel scalable regionalization framework (PAGE) to support MP-regions on large datasets. The proposed framework works in two stages. The first stage finds an initial solution through randomized search, and the second stage improves this solution through efficient heuristic search. To build an initial solution efficiently, we extend traditional spatial partitioning techniques to enable parallelized region building without violating the spatial constraints. Furthermore, we optimize the region building efficiency and quality by tuning the randomized area selection to trade off runtime with region homogeneity. The experimental evaluation shows the superiority of our framework to support an order of magnitude larger datasets efficiently compared to the state-of-the-art techniques while producing high-quality solutions.more » « less
-
In multi-objective search, edges are annotated with cost vectors consisting of multiple cost components. A path dominates another path with the same start and goal vertices iff the component-wise sum of the cost vectors of the edges of the former path is 'less than' the component-wise sum of the cost vectors of the edges of the latter path. The Pareto-optimal solution set is the set of all undominated paths from a given start vertex to a given goal vertex. Its size can be exponential in the size of the graph being searched, which makes multi-objective search time-consuming. In this paper, we therefore study how to find an approximate Pareto-optimal solution set for a user-provided vector of approximation factors. The size of such a solution set can be significantly smaller than the size of the Pareto-optimal solution set, which enables the design of approximate multi-objective search algorithms that are efficient and produce small solution sets. We present such an algorithm in this paper, called A*pex. A*pex builds on PPA*, a state-of-the-art approximate bi-objective search algorithm (where there are only two cost components) but (1) makes PPA* more efficient for bi-objective search and (2) generalizes it to multi-objective search for any number of cost components. We first analyze the correctness of A*pex and then experimentally demonstrate its efficiency advantage over existing approximate algorithms for bi- and tri-objective search.more » « less
-
Skyline queries are used to find the Pareto optimal solution from datasets containing multi-dimensional data points. In this paper, we propose a new type of skyline queries whose evaluation is constrained by a multi-cost transportation network (MCTN) and whose answers are off the network. This type of skyline queries is useful in many applications. For example, a person wants to find an apartment by considering not only the price and the surrounding area of the apartment, but also the transportation cost, time, and distance between the apartment and his/her work place. Most existing works that evaluate skyline queries on multi-cost networks (MCNs), which are either MCTNs or road networks, find interesting objects that locate on edges of the networks. Formally, our new type of skyline queries takes as input an MCTN, a query point q, and a set of objects of interest D with spatial information, where q and the objects in D are off the network. The answers to such queries are objects in D that are not dominated by other D objects when considering the multiple attributes of these objects and the multiple network cost from q to the solution objects. To evaluate such queries, we propose an exact search algorithm and its improved version by implementing several properties. The space of the exact skyline solutions is huge and can easily reach the order of thousands and incur long evaluation time. We further design much more efficient heuristic methods to find approximate solutions. We run extensive experiments using both real and synthetic datasets to test the effectiveness and efficiency of our proposed approaches. The results show that the exact search algorithm can be dramatically improved by utilizing several properties. The heuristic approaches to find approximate answers can largely reduce the query time and retrieve results that are comparable to the exact solutions.more » « less
-
We present an incremental search algorithm, called Lifelong-GLS, which combines the vertex efficiency of Lifelong Planning A* (LPA*) and the edge efficiency of Generalized Lazy Search (GLS) for efficient replanning on dynamic graphs where edge evaluation is expensive. We use a lazily evaluated LPA* to repair the cost-to-come inconsistencies of the relevant region of the current search tree based on the previous search results, and then we restrict the expensive edge evaluations only to the current shortest subpath as in the GLS framework. The proposed algorithm is complete and correct in finding the optimal solution in the current graph, if one exists. We also show the efficiency of the proposed algorithm compared to the standard LPA* and the GLS algorithms over consecutive search episodes in a dynamic environment.more » « less
An official website of the United States government

