skip to main content

Title: PDSum: Prototype-driven Continuous Summarization of Evolving Multi-document Sets Stream
Summarizing text-rich documents has been long studied in the literature, but most of the existing efforts have been made to summarize a static and predefined multi-document set. With the rapid development of online platforms for generating and distributing text-rich documents, there arises an urgent need for continuously summarizing dynamically evolving multi-document sets where the composition of documents and sets is changing over time. This is especially challenging as the summarization should be not only effective in incorporating relevant, novel, and distinctive information from each concurrent multi-document set, but also efficient in serving online applications. In this work, we propose a new summarization problem, Evolving Multi-Document sets stream Summarization (EMDS), and introduce a novel unsupervised algorithm PDSum with the idea of prototype-driven continuous summarization. PDSum builds a lightweight prototype of each multi-document set and exploits it to adapt to new documents while preserving accumulated knowledge from previous documents. To update new summaries, the most representative sentences for each multi-document set are extracted by measuring their similarities to the prototypes. A thorough evaluation with real multi-document sets streams demonstrates that PDSum outperforms state-of-the-art unsupervised multi-document summarization algorithms in EMDS in terms of relevance, novelty, and distinctiveness and is also robust to various evaluation settings.  more » « less
Award ID(s):
1956151 1741317 1704532
Author(s) / Creator(s):
; ;
Corporate Creator(s):
Proc. 2023 The Web Conf. 
Publisher / Repository:
Date Published:
Edition / Version:
Page Range / eLocation ID:
1650 to 1661
Subject(s) / Keyword(s):
["Prototype-driven Continuous Summarization, Evolving Multi-document Sets Stream, text stream mining"]
Medium: X
Austin TX USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Carlotta Demeniconi, Ian Davidson: (Ed.)
    Multi-document summarization, which summarizes a set of documents with a small number of phrases or sentences, provides a concise and critical essence of the documents. Existing multi-document summarization methods ignore the fact that there often exist many relevant documents that provide surrounding background knowledge, which can help generate a salient and discriminative summary for a given set of documents. In this paper, we propose a novel method, SUMDocS (Surrounding-aware Unsupervised Multi-Document Summarization), which incorporates rich surrounding (topically related) documents to help improve the quality of extractive summarization without human supervision. Speci fically, we propose a joint optimization algorithm to unify global novelty (i.e., category-level frequent and discriminative), local consistency (i.e., locally frequent, co-occurring), and local saliency (i.e., salient from its surroundings) such that the obtained summary captures the characteristics of the target documents. Extensive experiments on news and scientifi c domains demonstrate the superior performance of our method when the unlabeled surrounding corpus is utilized. 
    more » « less
  2. null (Ed.)
    Text categorization is an essential task in Web content analysis. Considering the ever-evolving Web data and new emerging categories, instead of the laborious supervised setting, in this paper, we focus on the minimally-supervised setting that aims to categorize documents effectively, with a couple of seed documents annotated per category. We recognize that texts collected from the Web are often structure-rich, i.e., accompanied by various metadata. One can easily organize the corpus into a text-rich network, joining raw text documents with document attributes, high-quality phrases, label surface names as nodes, and their associations as edges. Such a network provides a holistic view of the corpus’ heterogeneous data sources and enables a joint optimization for network-based analysis and deep textual model training. We therefore propose a novel framework for minimally supervised categorization by learning from the text-rich network. Specifically, we jointly train two modules with different inductive biases – a text analysis module for text understanding and a network learning module for class-discriminative, scalable network learning. Each module generates pseudo training labels from the unlabeled document set, and both modules mutually enhance each other by co-training using pooled pseudo labels. We test our model on two real-world datasets. On the challenging e-commerce product categorization dataset with 683 categories, our experiments show that given only three seed documents per category, our framework can achieve an accuracy of about 92%, significantly outperforming all compared methods; our accuracy is only less than 2% away from the supervised BERT model trained on about 50K labeled documents. 
    more » « less
  3. Extractive summarization is an important natural language processing approach used for document compression, improved reading comprehension, key phrase extraction, indexing, query set generation, and other analytics approaches. Extractive summarization has specific advantages over abstractive summarization in that it preserves style, specific text elements, and compound phrases that might be more directly associated with the text. In this article, the relative effectiveness of extractive summarization is considered on two widely different corpora: (1) a set of works of fiction (100 total, mainly novels) available from Project Gutenberg, and (2) a large set of news articles (3000) for which a ground truthed summarization (gold standard) is provided by the authors of the news articles. Both sets were evaluated using 5 different Python Sumy algorithms and compared to randomly-generated summarizations quantitatively. Two functional approaches to assessing the efficacy of summarization using a query set on both the original documents and their summaries, and using document classification on a 12-class set to compare among different summarization approaches, are introduced. The results, unsurprisingly, show considerable differences consistent with the different nature of these two data sets. The LSA and Luhn summarization approaches were most effective on the database of fiction, while all five summarization approaches were similarly effective on the database of articles. Overall, the Luhn approach was deemed the most generally relevant among those tested. 
    more » « less
  4. Automated event detection from news corpora is a crucial task towards mining fast-evolving structured knowledge. As real-world events have different granularities, from the top-level themes to key events and then to event mentions corresponding to concrete actions, there are generally two lines of research: (1) theme detection tries to identify from a news corpus major themes (e.g., “2019 Hong Kong Protests” versus “2020 U.S. Presidential Election”) which have very distinct semantics; and (2) action extraction aims to extract from a single document mention-level actions (e.g., “the police hit the left arm of the protester”) that are often too fine-grained for comprehending the real-world event. In this paper, we propose a new task, key event detection at the intermediate level, which aims to detect from a news corpus key events (e.g., HK Airport Protest on Aug. 12-14), each happening at a particular time/location and focusing on the same topic. This task can bridge event understanding and structuring and is inherently challenging because of (1) the thematic and temporal closeness of different key events and (2) the scarcity of labeled data due to the fast-evolving nature of news articles. To address these challenges, we develop an unsupervised key event detection framework, EvMine, that (1) extracts temporally frequent peak phrases using a novel ttf-itf score, (2) merges peak phrases into event-indicative feature sets by detecting communities from our designed peak phrase graph that captures document cooccurrences, semantic similarities, and temporal closeness signals, and (3) iteratively retrieves documents related to each key event by training a classifier with automatically generated pseudo labels from the event-indicative feature sets and refining the detected key events using the retrieved documents in each iteration. Extensive experiments and case studies show EvMine outperforms all the baseline methods and its ablations on two real-world news corpora. 
    more » « less
  5. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository ( -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. 
    more » « less