skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2039449

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose equi-explanation maps to study the variation in model logic across the input space. These global model-agnostic structures partition the hyper-space of explanation features into regions of similar model logic. Equi-explanation maps act as a concise summary of instance explanations and can provide laymen an at-a-glance understanding of the basis on which the classifier makes its decisions. We thus propose the task of generating $$\epsilon$$-equi-explanation maps, a partitioning of the input space into subspaces such that the standard deviation of explanation vectors in a subspace do not exceed $$\epsilon$$. We adapt existing local and subspace explainability techniques like LIME and MUSE to generate equi-explanation maps on two binary classification datasets using four classification models and evaluate the quality of their partitioning. We find that these techniques produce a sub-optimal number of subspaces (making the maps harder to interpret) and have a considerable run time. We then propose E-map, a new divide-and-conquer based algorithm to produce $$\epsilon$$-equi-explanation maps. E-map is able to decrease the number of subspaces (and hence increase interpretability) and running time as compared to the previous systems for a fixed value of $$\epsilon$$. Finally, given a classifier decision boundary, we try to determine what would be an optimal value for the parameter $$\epsilon$$. We believe good explanation representation methods can increase the trustworthiness and understanding of machine learning models for critical real world tasks. 
    more » « less
  2. null (Ed.)
    Query Biased Summarization (QBS) aims to produce a summary of the documents retrieved against a query to reduce the human effort for inspecting the full-text content of a document. Typical summarization approaches extract a document text snippet that has term overlap with the query and show that to a searcher. While snippets show relevant information in a document, to the best of our knowledge, there does not exist a summarization system that shows what relevant concepts is missing in a document. Our study focuses on the reduction of user effort in finding relevant documents by exposing them to omitted relevant information. To this end, we use a classical approach, DSPApprox, to find terms or phrases relevant to a query. Then we identify which terms or phrases are missing in a document, present them in a search interface, and ask crowd workers to judge document relevance based on snippets and missing information. Experimental results show both benefits and limitations of this approach. 
    more » « less