skip to main content

Title: Search for globular clusters associated with the Milky Way dwarf galaxies using Gaia DR2
ABSTRACT We report the result of searching for globular clusters (GCs) around 55 Milky Way (MW) satellite dwarf galaxies within the distance of 450 kpc from the Galactic Centre except for the Large and Small Magellanic Clouds and the Sagittarius dwarf. For each dwarf, we analyse the stellar distribution of sources in Gaia DR2, selected by magnitude, proper motion, and source morphology. Using the kernel density estimation of stellar number counts, we identify 11 possible GC candidates. Cross-matched with existing imaging data, all 11 objects are known either GCs or galaxies and only Fornax GC 1–6 among them are associated with the targeted dwarf galaxy. Using simulated GCs, we calculate the GC detection limit $M_{\rm V}^{\rm lim}$ that spans the range from $M_{\rm V}^{\rm lim}\sim -7$ for distant dwarfs to $M_{\rm V}^{\rm lim}\sim 0$ for nearby systems. Assuming a Gaussian GC luminosity function, we compute that the completeness of the GC search is above 90 per cent for most dwarf galaxies. We construct the 90 per cent credible intervals/upper limits on the GC specific frequency SN of the MW dwarf galaxies: 12 < SN < 47 for Fornax, SN < 20 for the dwarfs with −12 < MV < −10, SN more » < 30 for the dwarfs with −10 < MV < −7, and SN < 90 for the dwarfs with MV > −7. Based on SN, we derive the probability of galaxies hosting GCs given their luminosity, finding that the probability of galaxies fainter than MV = −9 to host GCs is lower than 0.1. « less
Award ID(s):
1909584 1813881
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
986 to 997
Sponsoring Org:
National Science Foundation
More Like this

    We use GRUMPY, a simple regulator-type model for dwarf galaxy formation and evolution, to forward model the dwarf galaxy satellite population of the Milky Way (MW) using the Caterpillar zoom-in simulation suite. We show that luminosity and distance distributions of the model satellites are consistent with the distributions measured in the DES, PS1, and SDSS surveys, even without including a model for the orphan galaxies. We also show that our model for dwarf galaxy sizes can simultaneously reproduce the observed distribution of stellar half-mass radii, r1/2, of the MW satellites and the overall r1/2–M⋆ relation exhibited by observed dwarf galaxies. The model predicts that some of the observed faint stellar systems with r1/2 < 10 pc are ultra-faint dwarf galaxies. Scaling of the stellar mass M⋆ and peak halo mass Mpeak for the model satellites is not described by a power law, but has a clear flattening of M⋆–Mpeak scaling at $M_{\rm peak}\lt 10^8\, \, M_{\odot }$ imprinted by reionization. As a result, the fraction of low mass haloes ($M_{\rm peak}\lt 10^8 \, M_{\odot }$) hosting galaxies with MV < 0 is predicted to be 50 per cent at $M_{\rm peak}\sim 3.6 \times 10^7\, \, M_{\odot }$. We find that such highmore »fraction at that halo mass helps to reproduce the number of dwarf galaxies discovered recently in the HSC-SSP survey. Using the model we forecast that there should be the total of $440^{+201}_{-147}$ (68 per cent confidence interval) MW satellites with MV < 0 and r1/2 > 10 pc within 300 kpc and make specific predictions for the HSC-SSP, DELVE-WIDE, and LSST surveys.

    « less
  2. ABSTRACT Globular clusters (GCs) are often used to estimate the dark matter content of galaxies, especially dwarf galaxies, where other kinematic tracers are lacking. These estimates typically assume spherical symmetry and dynamical equilibrium, assumptions that may not hold for the sparse GC population of dwarfs in galaxy clusters. We use a catalogue of GCs tagged on to the Illustris simulation to study the accuracy of GC-based mass estimates. We focus on galaxies in the stellar mass range 108–1011.8 M⊙ identified in nine simulated Virgo-like clusters. Our results indicate that mass estimates are, on average, accurate in systems with GC numbers NGC ≥ 10 and where the uncertainty of individual GC line-of-sight velocities is smaller than the inferred velocity dispersion, σGC. In cases where NGC ≤ 10, however, biases may result, depending on how σGC is computed. We provide calibrations that may help alleviate these biases in methods widely used in the literature. As an application, we find a number of dwarfs with $M_{*} \sim 10^{8.5}\, \mathrm{M}_{\odot }$ – comparable with the ultra-diffuse galaxy NGC 1052-DF2 (DF2), notable for the low σGC of its 10 GCs – that have $\sigma _{\rm GC} \sim 7\!-\!15\, {\rm km \,s}^{-1}$. These DF2 analogues correspond tomore »relatively massive systems at their infall time (M200 ∼ 1–3 × 1011 M⊙), which have retained only 3–17 GCs and have been stripped of more than 95 per cent of their dark matter. Our results suggest that extreme tidal mass loss in otherwise normal dwarf galaxies may be a possible formation channel for ultra-diffuse objects such as DF2.« less
  3. ABSTRACT Within lambda cold dark matter ($\Lambda$CDM), dwarf galaxies like the Large Magellanic Cloud (LMC) are expected to host numerous dark matter subhaloes, several of which should host faint dwarf companions. Recent Gaia proper motions confirm new members of the LMC system in addition to the previously known SMC, including two classical dwarf galaxies ($M_\ast$$\gt 10^5$ M$_{\odot }$; Carina and Fornax) as well as several ultrafaint dwarfs (Car2, Car3, Hor1, and Hyd1). We use the Feedback In Realistic Environments (FIRE) simulations to study the dark and luminous (down to ultrafaint masses, $M_\ast$$\sim$6$\times 10^ {3}$ M$_{\odot }$) substructure population of isolated LMC-mass hosts ($M_{\text{200m}}$ = 1–3$\times 10^ {11}$ M$_{\odot }$) and place the Gaia  + DES results in a cosmological context. By comparing number counts of subhaloes in simulations with and without baryons, we find that, within 0.2 $r_{\text{200m}}$, LMC-mass hosts deplete $\sim$30 per cent of their substructure, significantly lower than the $\sim$70 per cent of substructure depleted by Milky Way (MW) mass hosts. For our highest resolution runs ($m_\text{bary}$  = 880 M$_{\odot }$), $\sim 5\!-\!10$ subhaloes form galaxies with $M_\ast$$\ge 10^{4}$ M$_{\odot }$ , in agreement with the seven observationally inferred pre-infall LMC companions. However, we find steeper simulated luminosity functions than observed, hinting at observation incompleteness at the faintmore »end. The predicted DM content for classical satellites in FIRE agrees with observed estimates for Carina and Fornax, supporting the case for an LMC association. We predict that tidal stripping within the LMC potential lowers the inner dark matter density of ultrafaint companions of the LMC. Thus, in addition to their orbital consistency, the low densities of dwarfs Car2, Hyd1, and Hyd2 reinforce their likelihood of Magellanic association.« less
  4. null (Ed.)
    ABSTRACT We present the first set of cosmological baryonic zoom-in simulations of galaxies including dissipative self-interacting dark matter (dSIDM). These simulations utilize the Feedback In Realistic Environments galaxy formation physics, but allow the dark matter to have dissipative self-interactions analogous to standard model forces, parametrized by the self-interaction cross-section per unit mass, (σ/m), and the dimensionless degree of dissipation, 0 < fdiss < 1. We survey this parameter space, including constant and velocity-dependent cross-sections, and focus on structural and kinematic properties of dwarf galaxies with $M_{\rm halo} \sim 10^{10-11}{\, \rm M_\odot }$ and $M_{\ast } \sim 10^{5-8}{\, \rm M_\odot }$. Central density profiles (parametrized as ρ ∝ rα) of simulated dwarfs become cuspy when $(\sigma /m)_{\rm eff} \gtrsim 0.1\, {\rm cm^{2}\, g^{-1}}$ (and fdiss = 0.5 as fiducial). The power-law slopes asymptote to α ≈ −1.5 in low-mass dwarfs independent of cross-section, which arises from a dark matter ‘cooling flow’. Through comparisons with dark matter only simulations, we find the profile in this regime is insensitive to the inclusion of baryons. However, when $(\sigma /m)_{\rm eff} \ll 0.1\, {\rm cm^{2}\, g^{-1}}$, baryonic effects can produce cored density profiles comparable to non-dissipative cold dark matter (CDM) runs but at smaller radii. Simulated galaxies withmore »$(\sigma /m) \gtrsim 10\, {\rm cm^{2}\, g^{-1}}$ and the fiducial fdiss develop significant coherent rotation of dark matter, accompanied by halo deformation, but this is unlike the well-defined thin ‘dark discs’ often attributed to baryon-like dSIDM. The density profiles in this high cross-section model exhibit lower normalizations given the onset of halo deformation. For our surveyed dSIDM parameters, halo masses and galaxy stellar masses do not show appreciable difference from CDM, but dark matter kinematics and halo concentrations/shapes can differ.« less
  5. ABSTRACT Intermediate-mass black holes (IMBHs, $10^{3\!-\!6} \, {\rm M_\odot }$), are typically found at the centre of dwarf galaxies and might be wandering, thus far undetected, in the Milky Way (MW). We use model spectra for advection-dominated accretion flows to compute the typical fluxes, in a range of frequencies spanning from radio to X-rays, emitted by a putative population of $10^5 \, {\rm M_\odot }$ IMBHs wandering in five realistic volume-weighted MW environments. We predict that $\sim 27{{\ \rm per\ cent}}$ of the wandering IMBHs can be detected in the X-ray with Chandra, $\sim 37{{\ \rm per\ cent}}$ in the near-infrared with the Roman Space Telescope, $\sim 49{{\ \rm per\ cent}}$ in the sub-mm with CMB-S4, and $\sim 57{{\ \rm per\ cent}}$ in the radio with ngVLA. We find that the brightest fluxes are emitted by IMBHs passing through molecular clouds or cold neutral medium, where they are always detectable. We propose criteria to facilitate the selection of candidates in multiwavelength surveys. Specifically, we compute the X-ray to optical ratio (αox) and the optical to sub-mm ratio, as a function of the accretion rate of the IMBH. We show that at low rates the sub-mm emission of IMBHs is significantlymore »higher than the optical, UV, and X-ray emission. Finally, we place upper limits on the number N• of these objects in the MW: N• < 2000 and N• < 100, based on our detectability expectations and current lack of detections in molecular clouds and cold neutral medium, respectively. These predictions will guide future searches of IMBHs in the MW, which will be instrumental to understanding their demographics and evolution.« less