skip to main content


Title: Leveraging Field-Campaign Networks to Identify Sexual Harassment in Atmospheric Science and Pilot Promising Interventions
Abstract Sexual harassment in field settings brings unique challenges for prevention and response, as field research occurs outside “typical” workplaces, often in remote locations that create additional safety concerns and new team dynamics. We report on a project that has 1) trained field project participants to recognize, report, and confront sexual harassment, and 2) investigated the perceptions, attitudes, and experiences of field researchers regarding sexual harassment. Pre-campaign surveys from four major, multi-institutional, domestic and international field projects indicate that the majority of sexual harassment reported prior to the field campaigns was hostile work environment harassment, and women were more likely to be the recipients, on average reporting 2-3 incidents each. The majority of those disclosing harassment indicated that they coped with past experiences by avoiding their harasser or downplaying incidents. Of the incidences reported (47) in post-campaign surveys of the four field teams, all fell under the category of hostile work environment and included incidents of verbal, visual, and physical harassment. Women’s harassment experiences were perpetrated by men 100% of the time, and the majority of the perpetrators were in more senior positions than the victims. Men’s harassment experiences were perpetrated by a mix of women and men, and the majority came from those at the same position of seniority. Post-project surveys indicate that the training programs (taking place before the field projects) helped participants come away with more positive than negative emotions and perceptions of the training, the leadership, and their overall experiences on the field campaign.  more » « less
Award ID(s):
1661799 1822420 1725424 1835055 1661657
NSF-PAR ID:
10276247
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
ISSN:
0003-0007
Page Range / eLocation ID:
1 to 32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Geosciences remain one of the least diverse fields. Efforts to diversify the discipline need to address the role of hostile and exclusionary work and learning environments. A workplace climate survey distributed to five professional organizations illustrates varied experiences of earth and space scientists over a 12‐month period (pre‐COVID). A majority experienced positive interactions in the workplace. However, scientists of color, women and non‐binary individuals, scientists with disabilities, and lesbian, gay, bisexual, queer, pansexual, and asexual (LGBQPA+) scientists more frequently experienced negative interactions, including interpersonal mistreatment, discriminatory language, and sexual harassment. Geoscientists of color were more likely to experience devaluation of their work than white scientists. More than half of women and non‐binary respondents, as well as those who identify as LGBQPA+ experienced identity‐based discriminatory remarks. Disabled geoscientists were more likely to hear negative identity‐based language than those who did not disclose a disability. Overall, 14% of all respondents experienced sexual harassment in the previous year. Rates were greatest for historically excluded groups: non‐binary (51%), LGBQPA+ (33%), disabled (26%), women (20%), and geoscientists of color (17%). A majority of geoscientists reported avoiding their colleagues and almost a third considered leaving their institution or a career change. Historically excluded groups were more likely to report opting out of professional activities with potential career consequences. To address continued exclusion and low retention in the earth and space sciences, recruitment is not enough. We need to create environments that ensure opportunities for all to thrive.

     
    more » « less
  2. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  3. null (Ed.)
    Engineering Projects in Community Service (EPICS) is a middle and high school program, with a focus on the engineering design process and delivering real solutions to community partners. In order to evaluate the efficacy of the program, a pre-post test design was implemented to examine changes in attitudinal and behavioral measures. Pre-data were collected at the beginning of the school year, and paralleled the program’s registration process to ensure high response rates; post- data were then collected at the end of the school year. Demographic data demonstrate that of all 2018 - 2019 registered EPICS participants (N = 414), 41 percent were female; 66.6 percent were non-white; and 30 percent held first generation student status. Importantly, 68.5 percent of participants reported that neither parent or guardian is an engineer, and 65.7 percent of participants reported that they “definitely will attend” a four-year university. These data suggest that the current sample is ideal for evaluating EPICS as a pre-college engineering education program, because most participants are not experiencing engineering in the home and may be less susceptible to parental pressures for choosing engineering as a college major and potential career, but have salient intentions to attend college. In addition to collecting demographic information, participants completed a series of measures designed to capture attitudes and behaviors toward engineering as a potential career field. The main measures of interest include Engineering Identity and Doing Engineering. Engineering Identity scores reflect participants’ personal and professional identities as engineers; Doing Engineering scores indicate participants’ prior experience with engineering and its related technical skills. Baseline data on the sample reveal average engineering identities (M = 38.41, SD = 6.44, 95% CI [37.77, 39.05]). A series of t-tests was conducted to examine gender differences in these measures. Men reported significantly higher engineering identities (M = 37.65, SD = 6.58) compared to women (M = 39.54, SD = 6.09), t(360) = 2.95, p = .003, F = .037. Men reported stronger and more frequent experiences with engineering, indicated by their higher Doing Engineering scores (M = 13.75, SD = 5.16), compared to women (M = 15.31, SD = 4.69), t(368) = 3.13, p = .002, F = .003. Interestingly, first generation students reported higher engineering identities (M = 37.45, SD = 6.53) compared to non-first generation students (M = 39.66, SD = 5.99), t(375) = 3.46, p = .001, F = 1.39. To examine the relationship between Engineering Identity and Doing Engineering, a correlation analysis was conducted and a moderate, positive relationship emerged, such that as students’ experience with engineering increased, their engineering identities also increased (R = .463, p > .000). 
    more » « less
  4. Social media platforms are accused repeatedly of creating environments in which women are bullied and harassed. We argue that online aggression toward women aims to reinforce traditional feminine norms and stereotypes. In a mixed methods study, we find that this type of aggression on Twitter is common and extensive and that it can spread far beyond the original target. We locate over 2.9 million tweets in one week that contain instances of gendered insults (e.g., “bitch,” “cunt,” “slut,” or “whore”)—averaging 419,000 sexist slurs per day. The vast majority of these tweets are negative in sentiment. We analyze the social networks of the conversations that ensue in several cases and demonstrate how the use of “replies,” “retweets,” and “likes” can further victimize a target. Additionally, we develop a sentiment classifier that we use in a regression analysis to compare the negativity of sexist messages. We find that words in a message that reinforce feminine stereotypes inflate the negative sentiment of tweets to a significant and sizeable degree. These terms include those insulting someone’s appearance (e.g., “ugly”), intellect (e.g., “stupid”), sexual experience (e.g., “promiscuous”), mental stability (e.g., “crazy”), and age (“old”). Messages enforcing beauty norms tend to be particularly negative. In sum, hostile, sexist tweets are strategic in nature. They aim to promote traditional, cultural beliefs about femininity, such as beauty ideals, and they shame victims by accusing them of falling short of these standards. Harassment on social media constitutes an everyday, routine occurrence, with researchers finding 9,764,583 messages referencing bullying on Twitter over the span of two years (Bellmore et al. 2015). In other words, Twitter users post over 13,000 bullying-related messages on a daily basis. Forms of online aggression also carry with them serious, negative consequences. Repeated research documents that bullying victims suffer from a host of deleterious outcomes, such as low self-esteem (Hinduja and Patchin 2010), emotional and psychological distress (Ybarra et al. 2006), and negative emotions (Faris and Felmlee 2014; Juvonen and Gross 2008). Compared to those who have not been attacked, victims also tend to report more incidents of suicide ideation and attempted suicide (Hinduja and Patchin 2010). Several studies document that the targets of cyberbullying are disproportionately women (Backe et al. 2018; Felmlee and Faris 2016; Hinduja and Patchin 2010; Pew Research Center 2017), although there are exceptions depending on definitions and venues. Yet, we know little about the content or pattern of cyber aggression directed toward women in online forums. The purpose of the present research, therefore, is to examine in detail the practice of aggressive messaging that targets women and femininity within the social media venue of Twitter. Using both qualitative and quantitative analyses, we investigate the role of gender norm regulation in these patterns of cyber aggression. 
    more » « less
  5. High-impact academic experiences, particularly research and internship experiences, have positive impacts for engineering students on engineering task self-efficacy (ETSE), a measure of students’ perception of their ability to perform technical engineering tasks. However, under- represented racial/ethnic minority students (URM) and women in engineering are found to have relatively lower self-perceptions across several academic and professional self-efficacy measures. Previous studies examined the impact of research and internship experiences on ETSE for students categorized by gender and URM status separately. The current study explores the impact of these experiences on ETSE for the intersection between these two identity categories. This study found that both non-URM and URM women that participated in research and internship experiences had lower ETSE scores than non-URM and URM men, respectively. However, URM women that participated in both research and internship experiences had a statistically similar ETSE score to non-URM men that had not participated in either. This study uses multiple linear regression to measure the association between engineering internships and student’s reported ETSE (effects of participating in research were not found to be significant across identities). Preliminary findings indicate that differences in ETSE between internship participants and non-participants are highest for URM women when compared to their counterparts. Consistent with the literature, this research finds that there is a greater positive effect in ETSE scores, as a result of participation in both research and internship experiences, for URM women than their majority counterparts. These preliminary results provide a foundation for further studies to causally investigate the link between academic experiences and self-efficacy levels for students who are underrepresented in engineering programs. Future implications of this work include the creation of targeted intervention efforts to increase support for all URM students’ access and participation in research and internship experiences. Additionally, this work seeks to challenge the bias towards monolithic interpretations of women and URM engineering students as separate categories and encourage intersectional perspectives when analyzing data to produce more inclusive results. Key Concepts: intersectionality, self-efficacy, engineering task self-efficacy, learning outcomes, academic pathways, inclusion, engineering experiences, research, internships 
    more » « less